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Abstract

Image segmentation is a core task of computer vision, enabling a detailed understand-
ing of the scene. Pixel-level annotations are essential for training image segmentation
models, but producing such detailed labels is both time-consuming and expensive.
This thesis investigates an alternative path, weakly supervised semantic segmenta-
tion (WSSS), which involves training a segmentation model using indirect forms of
supervision that are significantly cheaper to obtain.

Rather than designing separate solutions for each type of supervision, the central
objective of this thesis is to create a unified framework that enables learning from
various forms of weak supervision, including classic weak labels (bounding boxes,
scribbles, points, and image-level tags) and background knowledge. To achieve this,
the proposed method uses a fuzzy logic-based approach to reason in a structured
and scalable manner.

More concretely, the framework fine-tunes a foundational vision model, Segment
Anything (SAM), to maximally satisfy a set of logical constraints derived from the
available weak forms of supervision. Despite its segmentation accuracy, SAM is not
suitable for inference on new images because it relies on prompts. To address this,
the framework includes a subsequent stage where it trains a segmentation network
in a fully supervised manner using pseudo-labels produced by SAM. This network
is the desired outcome of WSSS, achieving state-of-the-art results on two datasets:
Pascal VOC 2012 and LGG segmentation, with mIoU scores of 87.9% and 73.6%,
respectively.
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Chapter 1

Introduction

This first chapter sets the foundation for the development of this thesis. It begins by
establishing the context surrounding this work. It then specifies the problem addressed
and, thus, the motivation behind this research. It briefly introduces the related,
pre-existing approaches and then describes the proposed solution, emphasizing the
main contributions of this work. This chapter concludes by outlining the structure
of the subsequent chapters.

1.1 Context

Over the last decade, there have been tremendous advances and research efforts
in the field of machine learning, particularly in deep learning [73]. These have
extended into computer vision, which involves image analysis, where the availability
and scale of data have powered the development of various technologies [56, 41].
More specifically, large volumes of high-quality data enable training accurate models.
With full supervision, training requires access to target labels, which annotators
typically create manually or with the help of semi-automated tools that still require
human input [6]. However, this is a time-consuming procedure, as it often involves
annotating fine-grained details or recognizing variations between classes that are
hard to distinguish [98].

Additionally, the success of a firm specializing in machine learning technologies
significantly depends on the quality and availability of data resources. When publicly
available data does not fit the business requirements, the firm may opt to collect
proprietary data [47]. For a wide range of tasks in supervised learning, this process
not only consists of acquiring raw data (e.g., images) but also labeling it. This
labeling phase accounts for a significant portion of the costs, which can be either
time-related (requiring a person to perform the annotation manually) or hiring costs
(requiring external expertise) [96]. Reducing time-related costs may increase efficiency
and, therefore, decrease the time-to-market of the solution.
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1. Introduction

Figure 1.1: Segmentation map of an image from the Cityscapes dataset [17].

1.2 Problem

Image segmentation involves assigning a class label to each pixel of an image. For
instance, Figure 1.1 shows the expected result of segmenting an image from the
Cityscapes dataset [17]. As mentioned in the previous section, a significant downside
of the fully supervised approach to semantic segmentation is the high annotation
cost: pixel-wise labels require extensive (manual) effort, with the annotation time
extending to several minutes per image [98]. There are tasks such as 3D segmentation,
where labeling a single image can take several hours [99].

In contrast, in a weakly supervised setting, annotators provide weak labels, which
require less annotation effort than pixel-wise labels and only take seconds to perform
[1]. In weakly supervised semantic segmentation (WSSS), the task tackled by this
thesis, examples of such higher-level labels include image-level tags ("the image
contains a car"), bounding boxes ("there is a person in this bounding box"), scribbles
("these pixels belong to an airplane"), or points ("this point belongs to a dog").

Naturally, weak supervision aims to extract as much information as possible from
weak labels, with the hope of approaching the performance of full supervision. Thus,
a weakly supervised paradigm requires careful considering which labels to learn from
and how to design the learning process to minimize this performance gap. These
questions make the problem intrinsically hard.

1.3 Related work

Many works on weak supervision and WSSS, in particular, have been proposed over
the years, demonstrating that this topic is an active area of research.

Researchers often focus on exploiting a single type of weak label, typically one
of the ones previously mentioned. The approaches in this direction are diverse,
ranging from using class activation maps (CAMs) [100, 34] when only having access
to image-level class labels to a paradigm of propagating information to unknown
regions in the case of scribbles [66]. All of these approaches fall into a category

2



1.4. Approach

of specialized, ad-hoc solutions, as they narrow their focus on one type of weak
supervision, therefore being inflexible.

A few other works learn from multiple types of weak labels during the training
procedure. Xu et al. [90] employ a max-margin clustering framework to determine
the optimal assignment of class labels, with constraints formulated based on the
typical weak labels. Moreover, Ke et al. [37] utilize the same weak labels and
propose a method for encoding pixels into a latent space, where a contrastive learning
approach guides the pixel representation. While these methods can learn from the
most significant types of weak labels, it is not clear how to extend them beyond
classic weak labels.

As another weak supervision setting, prompting a foundational segmentation
model such as the Segment Anything Model (SAM) [41] has become an important
area of research recently. SAM is capable of producing unlabeled segmentation masks
for various tasks by utilizing points or bounding boxes as additional inputs. Starting
from a text prompt with all classes of interest, Sun et al. [77] managed to outperform
previous weakly supervised approaches by passing the text prompt through Grounded
DINO [53] to obtain bounding boxes, and later feeding the bounding boxes as prompts
to SAM. Other approaches [94, 49] guide the segmentation model through learnable
prompts rather than relying on handcrafted text prompts. While these approaches
yield impressive results, relying solely on the pre-trained segmentation model implies
that performance is reduced in scenarios or domains that are underrepresented in
the dataset on which the model was trained. For example, applying SAM on X-ray
images [19] yields strong results only after fine-tuning the base model. In addition, a
classic, weakly supervised pipeline may be preferred over the use of large foundational
models in applications constrained by available computing resources or time [77].

1.4 Approach

This thesis follows a conventional two-stage paradigm commonly used in the WSSS
literature. The process begins by using a weakly supervised method to produce
pseudo-segmentation labels for the training images. These serve as (fully annotated)
target labels for training a segmentation model in the second stage. The network
obtained through this process constitutes the desired result of WSSS.

Where this method distinguishes itself from other approaches is in the first stage,
which consists of a weakly supervised fine-tuning of the Segment Anything model.
Instead of exploiting a single type of weak label for producing pseudo-labels, this
thesis aims to effectively learn from multiple types of weak labels within a single,
unified framework. It achieves this by expressing logical constraints based on the
annotated weak labels and other prior knowledge. The framework converts these
expressions into differentiable learning signals (loss functions) used for training SAM.
This probabilistic view is not novel for image classification, where Shukla et al. [74]
introduce a dynamic programming-based algorithm for computing the probabilities
required for training a classifier under various forms of weak supervision. However,
the segmentation task has received less attention, likely due to the daunting challenge
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1. Introduction

of working in such a high-dimensional space.
Apart from providing a way to learn from the classic weak labels, the framework

developed in this thesis offers more flexibility in the types of signals that the neural
network can learn from. This method enables learning from prior knowledge expressed
as logical constraints, serving as a form of higher-level signals (e.g., "if there is a
TV in the image, then there is also a table"). Such flexibility is also of great use
outside academia, as it provides a way to iteratively correct situations where a neural
network performs poorly.

1.5 Results
Evaluation proceeds on two datasets: Pascal VOC 2012 [24] and LGG segmentation
[64]. The former is a standard benchmark for WSSS. At the same time, the latter
demonstrates the potential for applying the framework in the medical domain,
specifically for brain tumor segmentation. For a fair comparison to other works,
the second stage of the process involves training multiple segmentation networks:
Mask2Former [15], DeepLabV2 [11], and ConvNeXt-UPerNet [55, 87].

By training with qualitative pseudo-labels produced by SAM in the first phase,
the networks achieve state-of-the-art performance in terms of the mean intersection
over union (mIoU). On the Pascal VOC test set, Mask2Former reaches 87.9% mIoU,
while DeepLabV2 with a ResNet101 backbone produces a result of 78.2% mIoU,
improved to 79.6% with the Conditional Random Field post-processing available for
DeepLabV2. Similarly, the second-stage training of a ConvNeXt-UPerNet network
achieves 73.6% IoU for the tumor class on the LGG dataset, outperforming other
WSSS methods.

The key factors that contribute to such results are (1) leveraging SAM as a strong
baseline for segmentation, thus outperforming pre-SAM methods, and (2) benefiting
from the most amount of information during training. While previous works learn
from a single weak label type (image tags, points, bounding boxes, or scribbles), this
method benefits from both bounding box and scribble annotations.

1.6 Use of generative AI
Generative AI tools contributed to the clarity and correctness of the text in this thesis
during the writing process. This thesis used ChatGPT to assist with rephrasing the
text for improved readability and to draft LaTeX-formatted equations. Additionally,
it employed Grammarly to help correct grammatical errors and refine the overall
clarity of the text. These tools supported the writing process while keeping the
originality of the content.

1.7 Thesis structure
The following chapter introduces the key concepts used in this work, thus providing
the essential background information for understanding this topic.
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1.7. Thesis structure

Chapter 3 presents the literature review, which explores the two primary research
directions, semantic segmentation and weak supervision, and examines their inte-
gration. Additionally, this chapter examines works that effectively learn from logic
through constraints.

Chapter 4 further expands upon the problem statement and establishes the
objectives for this thesis. Chapter 5 presents an in-depth exploration of the proposed
solution for the problem above. Chapter 6 evaluates the solution and examines
the results in comparison with other works. It does so from various perspectives,
building an argument for the relevance of this work. Finally, chapter 7 summarizes
the findings and provides a critical assessment of whether the goals of this work were
reached. It also mentions the limitations of the current approach and how further
research can address these challenges.
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Chapter 2

Background

This chapter provides definitions and explanations for the concepts used in this study.
These include notions related to image segmentation, types of supervision, types
of weak labels, logic, and the probabilistic and fuzzy extensions of logic. This part
assumes that the reader has a basic understanding of deep learning, neural networks,
and first-order logic.

2.1 Image segmentation

Image segmentation is a core challenge of computer vision. As mentioned previously,
it consists of classifying images on a per-pixel basis. Despite having such a concise
definition, multiple forms of image segmentation exist.

Semantic segmentation. Semantic segmentation assigns each pixel in an image a
label corresponding to a class category [18], such as pedestrian, car, or road. It does
not distinguish between different objects of the same class.

Instance segmentation. Instance segmentation aims to identify and distinguish
individual objects [60] by labeling each pixel with the object it is a part of. However,
the objects themselves do not receive a class label.

Panoptic segmentation. Panoptic segmentation [40] generalizes the previous
tasks by assigning semantic class labels to pixels while also distinguishing individual
instances.

Figure 2.1 displays an overview of the three tasks of image segmentation, as pre-
sented by Kirillov et al. [40]. Although this thesis focuses on semantic segmentation,
the method discussed is not limited to this specific task. The framework allows
extensions for tasks such as instance or panoptic segmentation.

2.2 Types of supervision

Over the years, machine learning researchers have proposed various methods for
learning from data, most of which aim to alleviate the heavy annotation burden
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2. Background

Figure 2.1: Overview of the Image Segmentation tasks, as presented by Kirillov et
al. [40].

associated with fully supervised approaches. The part below outlines the learning
paradigms relevant to this work.

Fully supervised learning corresponds to training a model on labeled datasets
containing both raw inputs and corresponding target outputs. In the context of
semantic segmentation, this means each data point consists of an image along with
its per-pixel class labels.

Weakly supervised learning is a paradigm in which models learn from indirect
forms of supervision. Unlike full supervision, where the training data corresponds to
the exact output the model is expected to produce, weakly supervised methods rely
on less informative but easier-to-obtain labels [66]. It is also important to distinguish
weakly supervised approaches from semi-supervised learning [67], which involves
learning from a small labeled dataset and a (larger) set of unlabeled examples. This
setting is not in the scope of this thesis. An example of weak supervision applied
in the context of binary classification is Multiple Instance Learning (MIL), where
labels are available at a bag level rather than an instance level and indicate whether
the bag contains the positive class [74].

Weakly supervised semantic segmentation (WSSS) is an application of the
weakly supervised methodology in the context of segmentation. These methods
exploit information from one (or more) indirect labels and aim to produce accurate
segmentation maps of the input images [66]. The following section provides a detailed
discussion of the most commonly used types of weak labels and also introduces other
forms of indirect supervision.

Sparsely annotated semantic segmentation [48] refers to approaches that

8



2.3. Types of weak labels

(a) Image-level tags: (aeroplane) (b) Points

(c) Bounding boxes (d) Scribbles

Figure 2.2: Main types of weak labels in WSSS.

rely solely on sparse (or partial) labels, such as points or scribbles. It is, thus, a
subcategory within the broader field of WSSS. The work here is not limited to these
types of weak labels, but many works in this subfield relate to the problem discussed.

2.3 Types of weak labels

Figure 2.2 displays the four main types of weak labels in WSSS.

Image-level tags indicate the classes present in the image. One such example is
Figure 2.2a, where "aeroplane" is the only present tag. By default, the background is
part of the present classes.

Points offer the class label of one or more pixels in the image. As visualized
in Figure 2.2b, they are easy to annotate and provide localization on top of the
image-level tag annotation.

Scribbles are collections of points easily drawn by annotators. They are a form of
partial labels, as shown in Figure 2.2d, offering a trade-off between the sparsity of
point-level supervision and the high labeling costs associated with fully annotated
images. A scribble also contains an annotation for the class that the set of points
corresponds to.

Bounding boxes represent rectangles drawn around objects and also provide the
class labels of the objects localized within their boundaries. In this thesis, the

9



2. Background

convention used to define a bounding box is based on its upper-left and bottom-right
corners, denoted as (ymin, xmin) and (ymax, xmax), respectively.

Less common indirect forms of supervision may include volume annotations ("at
least half of the image contains dogs") [38], shape priors [25], or other domain-specific
knowledge in the form of logical expressions ("if the sun is present in an image, it is
above all other objects").

2.4 Logic

2.4.1 Classical Logic

As this thesis employs a predicate (or first-order) fuzzy logic for expressing and
learning from constraints, it is essential to first establish the terminology of classical
(predicate) logic. It consists of terms and formulas. Terms are either constants (e.g.
Airplane), variables (e.g. y2) or functions f(t1, ..., tn) where t1, ..., tn are terms. A
formula can be either an atom predicate (e.g., Box(xmin, ymin, xmax, ymax, c)) when
it expresses a relation between terms or can be arbitrarily nested by joining other
formulas with logical connectives. These, in turn, are the negation ¬, conjunction ∧,
disjunction ∨, implication ⇒, equivalence ⇔, as well as quantifiers ∃ and ∀.

2.4.2 Probabilistic logic

At the basis of probabilistic reasoning stands the weighted model counting (WMC)
problem [9], useful to compute the success probability of a query formula. WMC
typically operates in a propositional logic setting over a set Lit of literals which
represent variables or their negation. An interpretation or a structure ALit denotes
the truth assignment to those literals. A model of a formula ψ is an interpretation
ALit where the truth assignment of variables leads to the satisfaction of ψ, denoted
as ALit |= ψ. Mod(ψ) is the set of models of the formula ψ. Given a propositional
formula ψ and a weight function w, WMC computes:

WMC(ψ,w) =
∑

ALit∈Mod(ψ)

∏
l∈ALit

w(l), (2.1)

where w is a function w : Lit → R that maps every literal to a real number repre-
senting its weight. In probabilistic logic, the weight function follows the probability
distribution of the variables. Thus, every variable v has an associated probability of
success p and therefore, w(v) = p and w(¬v) = 1− p.

Extending this computation to first-order logic formulas with finite domains
typically involves a grounding operation that instantiates a formula with all combi-
nations of domain elements. Quantified formulas ∀x ψ and ∃x ψ in particular are
respectively grounded to a conjunction and a disjunction between the instantiations
of ψ. Grounding produces a propositional formula to which WMC applies directly.

Alternatively, computing the success probability of a first-order formula ψ reduces
to the weighted first-order model counting problem (WFOMC) [44]. Interpretations
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2.4. Logic

AA here denote truth assignments to the set of atoms and their negation, while the
function w maps a predicate or its negation to a real number:

WMC(ψ,w) =
∑

AA∈Mod(ψ)

∏
P∈AA

w(P )
∏

¬P∈AA

w(¬P ). (2.2)

2.4.3 Fuzzy logic

Fuzzy logic is an approximate reasoning paradigm where the truth values of variables
correspond to real numbers in the interval [0, 1] [79], varying from false to true. In
first-order fuzzy logic, predicates receive truth values instead [79].

Fuzzy logic replaces the boolean operators for logical connectives with continuous
functions: negation corresponds to an operator N ; a fuzzy t-norm T generalizes
conjunction, a fuzzy t-conorm S generalizes disjunction, and the material implication
corresponds to a fuzzy implication I [79]. As an example, a fuzzy negation is
N(x) = 1 − x, a fuzzy t-norm is the product t-norm T (x, y) = x · y [27]. Fuzzy
t-conorms typically use De Morgan’s law to define S(x, y) = N(T (N(x), N(y))) [79].
First-order fuzzy logic also defines fuzzy equivalents for the universal and existential
quantifiers [2]. These are aggregation operators AU and AE , respectively, which
are non-decreasing functions having all possible groundings of the subformula as
arguments.

Inference in a fuzzy logic context implies obtaining the truth degree (or satisfac-
tion) of a query formula ψ by recursively applying the fuzzy operators that construct
ψ. Then, considering a function w that assigns truth values to predicates, the truth
degree V of a formula ψ as presented by Krieken et al. [79] follows this inductive
definition on the structure of ψ:

V (P (t1, . . . , tn)) = w(P (t1, . . . , tn))
V (¬ψ) = N(V (ψ))

V (ψ ∧ ϕ) = T (V (ψ), V (ϕ))
V (ψ ∨ ϕ) = S(V (ψ), V (ϕ))
V (ψ → ϕ) = I(V (ψ), V (ϕ))
V (∀x ψ) = AU (V (ψ[x = x1]), . . . , V (ψ[x = xn]))
V (∃x ψ) = AE(V (ψ[x = x1]), . . . , V (ψ[x = xn])),

(2.3)

where x1, . . . , xn denote all possible groundings of x, and the notation ψ[x = xk]
refers to the formula ψ with the bounded variable x substituted by the ground term
xk.

The time complexity of evaluating a formula in fuzzy logic scales linearly in
the number of predicates and logical connectives used in the formula, but exponen-
tially with the number of nested quantifiers [79] because the aggregation operators
iteratively scan the domain of objects for each quantifier encountered.
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Chapter 3

Related work

This chapter explores key areas of research related to this study. It begins by
highlighting recent advances in semantic segmentation. Next, it connects these
approaches to techniques that apply weak supervision in the problem of semantic
segmentation. Finally, it introduces methods that train neural networks using signals
derived from logic. The analysis provides a detailed examination of each technique,
highlighting its advantages and potential limitations.

3.1 Semantic segmentation

Over time, semantic segmentation has been a significant topic of interest in the field
of computer vision [18, 60]. Its application domains are vast, receiving attention in
industries such as healthcare [81, 85], agriculture [57], while also enabling self-driving
vehicles [7]. The advances in deep learning, in particular, have translated into more
accurate segmentation methods.

Among the earlier deep learning-based methods that pioneered the use of an
encoder-decoder convolutional neural network (CNN) [56] are SegNet [4] and U-
Net [72]. The encoder specializes in extracting image features, while the decoder
sequentially upscales the intermediary results to the desired output resolution of the
segmentation mask, receiving additional signals from the encoder at every upscaling
layer.

The DeepLab family of models [11, 12, 13] have set important benchmarks in
the problem of semantic segmentation. Built using the ResNet [30] backbone as an
encoder, they enable the use of a much deeper network. Additionally, other improve-
ments made to the architecture, including the use of atrous spatial pyramid pooling
and the addition of an edge refinement module, resulted in increased segmentation
accuracy.

With their success in natural language processing (NLP) [80], Transformer
models have recently been introduced in computer vision pipelines [15, 101]. The
primary issue with adopting Transformers is that computing self-attention scales
quadratically with the sequence length [80]. While this is less of a problem in
NLP tasks, computing self-attention in the case of images scales quadratically in
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Figure 3.1: The architecture of SAM, proposed by Kirillov et al. [41].

the number of pixels [23], which is infeasible in practice. The Vision Transformer
(ViT) [23] and the Swin Transformer [54] address this issue by attending to image
patches rather than individual image pixels. While these two works do not tackle
segmentation in particular, methods such as Mask2Former [15] use transformers to
achieve state-of-the-art performance in all segmentation tasks (semantic, instance,
and panoptic) on the COCO dataset [51] at its publishing time.

The techniques above aim to train a promptless, closed-set segmentation network
(i.e., a network that receives a single image and produces a segmentation map with
class labels among a known set of classes). Recently, however, there has been a
shift towards promptable segmentation [101]. The latter represents a collection
of methods based on Foundational Models, which are networks of immense scale
trained on massive amounts of data, exhibiting powerful generalization potential. In
segmentation, zero-shot methods such as Segment Anything (SAM) [41] demonstrate
this. SAM can produce a meaningful segmentation given an interactive prompt, such
as a bounding box or a point. As shown in the model architecture proposed by Kirillov
et al. [41] and displayed in Figure 3.1, it achieves this by encoding both the image and
the prompts using Transformer models and combining them in a Transformer-based
decoder used for generating the segmentation masks. Although the quality of the
results is high for such an open-set method, SAM does not directly solve WSSS. In
contrast, this task expects to produce a trained promptless segmentation network
that performs inference on unseen images without additional prompts.

3.2 Weakly supervised semantic segmentation

Although the previous section focused on fully supervised semantic segmentation,
this thesis mainly contributes to WSSS. This section is an in-depth analysis of the
evolution of WSSS along its research paths. More specifically, this section follows
related methods and groups them by the type of weak annotations they exploit.

Before exploring the related works individually, it is essential to note that almost
all methods employ a two-stage procedure. The first step involves extracting pseudo-
segmentation labels for training images before using them as ground-truth data in a
second stage training.
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3.2.1 Bounding boxes

Among the earlier methods that use bounding boxes as weak annotations is Deep-
Cut [69], which employs a two-step iterative procedure similar to the Expectation-
Maximization (EM) algorithm [62]: an E step which labels pixels based on the
current model and an M step which updates the model. The model itself consists
of a CNN and a Conditional Random Field (CRF) [10], where the CNN assigns
per-pixel labels and the CRF imposes appearance and smoothness constraints on
pixel neighborhoods. While the method does not benefit from the segmentation
accuracy of recent models, considering pixel neighborhoods may still be relevant in
the context of WSSS at present.

Further along, Kervadec et al. [39] solve a constrained optimization problem
that aims to satisfy the bounding box tightness constraint [46] while optimizing for a
global emptiness constraint. The tightness constraint assumes that the target object
is perfectly framed within the bounding box, and thus, every row and column has a
pixel of the given class. On the other hand, the global emptiness constraint models
the outer region as background, enforcing that there are no pixels of the target class
outside of the bounding box.

Ji et al. [31] utilize bounding box annotations to isolate objects of interest and
create one dataset per class. Each such dataset contains a single class, so the method
employs a WSSS technique based on image-level tags to segment that class. After
producing pseudo-labels for individual objects, the method stitches them back into
the initial images at places corresponding to the bounding box annotations, exploring
multiple heuristics to handle potential overlaps.

The method proposed by Wang et al. [82] improves on the work of Kervadec et al.
[39] by tackling its main limitation, namely the requirement of tight bounding box
annotations. Instead, it learns from loose bounding box annotations by enforcing the
same Multiple Instance Learning (MIL) on polar lines in the bounding box rather
than axis-parallel lines.

A recent direction of research has been the use of large foundational models [101]
in the context of WSSS. In this sense, Jiang et al. [32] explore simply prompting
SAM [41] with the bounding box annotations of the Pascal VOC 2012 dataset [24]
to obtain pseudo-labels. Then, the method performs fully supervised training in
the second stage using the DeepLabV2 segmentation network. While this approach
serves as a baseline and demonstrates the zero-shot capabilities of SAM, it remains
unclear whether fine-tuning SAM in a weakly supervised manner can improve its
performance.

3.2.2 Scribbles

Early approaches focused on ways of propagating the scribble-based sparse anno-
tations to the rest of the image. For instance, ScribbleSup [50] divides the images
into superpixels and transforms the problem of pixel-wise segmentation into a clas-
sification of superpixels. It optimizes an objective function composed of a unary
term that models the class of each super-pixel and a binary term that models the
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similarity of two adjacent superpixels. A scribble contributes to the class assignment
of superpixels, while unlabeled superpixels receive information from neighboring
superpixels.

Other methods aim to propagate the information contained in the scribbles
iteratively. AGMM [86] proposes a network with a segmentation head and a Gaussian
mixture model (GMM) head. Besides the (partial) cross-entropy loss provided by the
scribbles, the predicted segmentation mask receives self-supervision from the GMM
predictions. TEL [48] is another coarse-to-fine method that represents the image
as a minimum spanning tree and trains a segmentation network via an additional
branch that models the interaction of color and semantic information of pixels across
the MST.

In Scribble hides class [97], the authors perform a joint task of classification and
segmentation. The classifier extracts class activation maps (CAM) [100], interpreted
as the most discriminative features of the classified objects. The segmentation network
receives localization hints from such CAMs through the localization rectification
module proposed.

Chan et al. [8] discuss using features of the classified pixels in training to expand
scribbles to unknown regions. In this sense, the method extracts local and global
prototypes from intermediate feature maps. These are part of an augmentation
procedure, where a loss term enforces consistency between the original predictions
and the predictions obtained from a feature map augmented with prototypes.

Besides the use of bounding boxes for prompting, the work of Jiang et al. [32]
also benchmarks SAM when prompted with scribbles. More precisely, they sample
20% of the points in each scribble and use them as prompts for SAM. The result is
similar to the one obtained by prompting SAM with bounding boxes.

3.2.3 Points

Point-based methods are a more active area of research in interactive segmentation
[76, 92]. Despite this, several methods have still been proposed for the problem of
WSSS.

Bearman et al. [5] tackle the sparsity of the annotations by jointly optimizing
both the cross-entropy loss for the labeled points and a loss based on an objectness
prior. The latter involves the probability that any point is part of an object and
encourages pixels to be classified as background when that probability is low or
encourages pixels to be one of the 20 object classes of Pascal VOC otherwise.

PCAM [59] primarily uses class activation maps. While initially intended for
image-level supervision, PCAM exploits the localization aspect of points to improve
predictions. The technique adds a point-supervised term of the loss function applied
to both the classification branch and the CAM-generating branch.

Again, Jiang et al. [32] test the effectiveness of SAM in a scenario where it
receives a single point per object instance as prompt. They confirm the assumption
that less informative labels lead to a worse performance by empirical evidence, as
the point-based prompting for SAM accounts for a 69.1% mIoU of the produced
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pseudo-labels, compared to the respective 89.7% and 91.5% for the scribble and
bounding box-based prompting methods mentioned in the previous subsections.

3.2.4 Image-level tags

Training based on image-level tags has received the most attention in WSSS [66].
Because such labels offer no localization hints, earlier works relied on emerging
properties of neural networks to identify discriminative features of the classes and
then propagate them. For instance, SEC [43] reformulates the problem as an
optimization of three losses: one based on localization cues extracted from a classifier
CNN; another that prevents too small predictions, and the last one which targets
the spatial and color properties of the pixels. This paradigm is similar to methods
that use class activation maps [100], such as PuzzleCAM [34]. There, the authors
propose extracting CAMs for tiles or patches of the image, followed by a merging
procedure. The CAM produced in this approach helps train the network using a
reconstruction loss.

The survey by Chen et al. [14] highlights the focus placed on image-level label
methods and the transition made from traditional CNN-based approaches to methods
that rely on the generalization and zero-shot capabilities of large vision models.
The study examines the primary applications of two foundational vision models:
Contrastive Language-Image Pre-Training (CLIP) [68] and Segment Anything (SAM)
[41].

CLIP encodes images and text into the same space, where similar inputs are close
in the embedding space, therefore enabling a large degree of interaction between
images and text. Weakly supervised methods leverage this property by turning
image-level tags into language prompts. CLIMS [88] extracts the CAM of an image
and maximizes the similarity between the highlighted region and a piece of text
corresponding to the given class label, minimizing the similarity between the non-
highlighted region and the same piece of text, suppressing hand-crafted backgrounds
co-occurring with the given image tag. CLIP-ES [52] is a training-free method that
relies again on hand-crafted prompts and refinement procedure to the initial CAM.
Context Prototype-Aware Learning (CPAL) [78] introduces a self-supervised learning
element to standard CAM-based methods by comparing the initially generated CAMs
with those produced by a prototype-aware module, thereby iteratively refining them.
Ultimately, the technique builds upon CLIP-ES and demonstrates improvements over
the original results. Xu et al. [93] notice a modality gap between text and image in
CLIP and propose a method of building vision prototypes instead of text prototypes.
Their method builds upon CPAL and effectively enhances its segmentation accuracy.
SemPLeS [49] corrects initially proposed masks by using trainable prompts for
CLIP. These learnable prompts aim to suppress co-occurring background while still
maximizing the similarity between objects proposed in the initial mask and the
class-aware textual prompts.

Although CLIP has received more attention in WSSS, many works aim to extract
pseudo-labels from SAM. The same study by Jiang et al. [32], referenced in the
previous subsections, investigated the use of SAM when only image-level tags are
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available. More precisely, they report the findings of two approaches: feeding points
sampled from CAMs as prompts to SAM or using SAM in its "segment-everything"
mode and adopting another method for classifying each proposed mask. Sun et al.
[77] show how a pipeline composed of GroundedDINO [53] and SAM can sequentially
turn image-level tags into bounding boxes and, subsequently, segmentation maps.
Lastly, Yang et al. [94] jointly use CLIP and SAM. There, learnable CLIP prompts
help propose an initial pseudo-segmentation mask. This, in turn, becomes a mask-
based dense prompt for SAM, capable of refining the coarse prediction into a final
pseudo-segmentation label used in the second stage fully supervised training. SAM
also has applications in medical image segmentation with SimTxtSeg [89] evaluating
a hybrid image-level tag and language supervision for extracting pseudo-labels from
colonic polyp images and MRI brain tumor images.

3.2.5 Universal methods

Although less common, some approaches have identified that weakly supervised
methods could exploit multiple forms of annotations during training. The motiva-
tion behind such methods is that incorporating diverse weak labels can enhance
segmentation accuracy.

Xu et al. [90] propose to solve a max-margin clustering problem aimed at
classifying super-pixels. The approach minimizes margin violation while satisfying
a set of constraints derived from the available weak labels, supporting image-level
tags, bounding boxes, and scribbles. For instance, the image-level tags constraints
dictate that if a tag is not present in an image, no superpixels should be assigned
that tag, and if a tag is present, then at least one superpixel takes it as its class label.
Additionally, the method treats bounding boxes as smaller-sized images, enforcing
the same tag-based constraints on them.

The approach of Ke et al. [37] involves encoding each pixel into an embedding
space generated through a contrastive learning method. Various forms of contrastive
relationships between pixels guide training. These include visual or textural similarity
or being part of the same superpixel or not. Unfortunately, despite being able to
simultaneously learn from all of the classic weak labels, the experiments include
only three separate scenarios, where only tags, scribbles, or bounding boxes are used
during training.

3.3 Differentiable Logics
Shukla et al. [74] tackle the problem of weakly supervised image classification by
defining a differentiable count-based loss function for each of the three settings.
These losses follow from a dynamic programming method that counts the probability
that exactly s out of k variables are true, given their success probability. While the
dynamic programming algorithm works well on the problem of image classification, it
is intractable for image segmentation. This is because of its O(k2) runtime complexity
in the size of the items to be classified, which correspond to pixels in an image in
the case of segmentation.
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A probabilistic approach for training neural networks is DeepProbLog [58], which
adds a neural predicate to ProbLog. The probability of success of such a neural
predicate depends on the output probabilities extracted from a neural network.
Learning becomes possible by grounding the logical program, compiling the knowledge
into a structure that optimizes WMC, and computing a loss based on the probability
of success of a query.

DL2 [26] specifies prior knowledge using logic and converts it to differentiable
signals for training neural networks. The differentiable loss functions created through
this method have the property that they are 0 when the constraint is satisfied.
The logical language consists of boolean operators applied to comparison terms.
The authors evaluate the method in various settings, including unsupervised, semi-
supervised, and fully supervised scenarios, and demonstrate that learning from
constraints is beneficial in all cases, with increased accuracy in unsupervised and
semi-supervised settings and a high constraint satisfaction ratio when utilizing full
supervision.

Some studies analyze the use of fuzzy operators for training neural networks. Van
Krien et al. [79] model a set of constraints for two problems using the MNIST dataset
[20]. With semi-supervision, the training process utilizes labeled samples to directly
supervise a CNN while applying logical constraints to guide learning from unlabeled
data. The study conducts a comparative performance analysis of common fuzzy
operators, including not only T-norms and S-norms for conjunction and disjunction
but also aggregators for universal and existential quantifiers. The conclusions indicate
that the product t-norm typically achieves the best results. Similarly, Flinkow et al.
[27] quantify both the prediction accuracy and the constraint satisfaction accuracy
when using various constraints. They benchmark DL2 [26] and fuzzy approaches,
concluding that the choice of differentiable logic depends on the problem.

Other techniques involve constructing a semantic loss function and fall under
the scope of semantic-based regularization [21]. It involves converting first-order
logic formulas into real values, which are used as a regularization term in the loss
function. This approach also extends to training neural networks [22, 91], with the
main applications being in a semi-supervised setting.

Logical Tensor Networks (LTN) [2] are yet another approach for integrating
deep learning with logical reasoning. As opposed to the previously mentioned
techniques that learn to shape predictions through a logic-based loss, LTNs focus
on learning tensor representations for the predicates within the architecture. More
specifically, the authors introduce a real logic formalism over first-order logic to
accommodate tensors as the concrete interpretations of logical objects (i.e., terms,
variables, constants). In this sense, as mentioned by van Krien et al. [79], LTNs
combine neural computation with logic on a low level, while previously mentioned
techniques add logic as a form of high-level learning. In LTNs, connectives and
quantifiers correspond to fuzzy operators, facilitating learning. LTNs utilize the
product t-norm TP to replace conjunction, which generally performs better than
other fuzzy logic operators in the context of training neural networks. Subsequent
work improves this baseline, with logLTN [3] replacing the semantics of LTNs with
semantics in the logarithm space for numerical stability.
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3.4 Conclusion
Based on the information presented in this chapter, the motivation for this thesis
becomes apparent: it stems from the current limitations of weakly supervised
segmentation. Recent works have not addressed the possibility of learning from
multiple types of weak labels, as most of the focus has been directed at learning from
the simplest form of weak annotation, namely image-level tags. Earlier approaches
designed to overcome this limitation, on the other hand, do not benefit from recent
advances in semantic segmentation. While each of the approaches mentioned in this
chapter has its strengths, there is a question of whether a method capable of learning
from multiple such sources could achieve better results.

The differentiable logic systems discussed lead to several key conclusions. While
a universal weakly supervised method already exists for image classification [74],
it has not been extended to image segmentation. Probabilistic logic systems such
as DeepProbLog rely on weighted model counting, which becomes computationally
intractable in the high-dimensional space of image segmentation. In contrast, ap-
proaches based on fuzzy logic remain promising due to their efficient inference. As
several studies have shown, their effectiveness depends on selecting fuzzy operators
that align with the problem at hand, namely image segmentation. Logic Tensor
Networks, particularly logLTN, are well-suited for segmentation, where scalability to
high-dimensional data is essential.
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Chapter 4

Problem statement

This chapter defines the research problem addressed in this thesis: training a
segmentation model in a weakly supervised manner using various forms of indirect
supervision. The thesis aims to balance two perspectives by investigating the
theoretical application of a differentiable logic to address this problem while also
demonstrating strong segmentation quality in practical settings.

4.1 Problem definition

The thesis focuses on weakly supervised semantic segmentation, the most studied
form of image segmentation in the literature on weak supervision. As introduced in
earlier chapters, semantic segmentation is the problem of assigning a class label to
every pixel of an image [18]. Deep learning, through the training of neural networks,
achieves state-of-the-art results in semantic segmentation [15]. In this setting, before
formally defining WSSS as addressed in this thesis, this section defines semantic
segmentation in the context of deep learning.

Definition 4.1.1 (Semantic segmentation with neural networks). Let X be
the input space of images, where x ∈ X is an image of shape H ×W × C, with H
and W the height and width of the image, and C the number of channels (3 for RGB
images). Let Y be the output space, where y ∈ Y is an image of shape H ×W called
the segmentation mask, with values among a finite set of possible classes C, with
|C| = C.

Then, semantic segmentation using neural networks aims to learn a parameterized
function

fθ : X → [0, 1]H×W×C , (4.1)

that maps an image x to per-pixel class probabilities P (yi,j = c|x) with c ∈ C. Thus,
the segmentation mask is computed by assigning the class with maximal probability
to each pixel:

ŷi,j = arg max
c∈C

fθ(x)i,j,c. (4.2)
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Further, this thesis defines WSSS in a way that explicitly uses a set F of first-order
logic formulas expressing (soft) constraints and prior knowledge that guide training.
Although other methods may rely solely on weak labels, this formulation highlights
the three components necessary for training in the context of this thesis: the input
images, the weak annotations, and the logical constraints.

Definition 4.1.2 (Weakly supervised semantic segmentation).
Let X be the input space of images defined earlier, W the space of annotated

weak labels, and F a set of first-order logic formulas derived from W or introduced
as prior knowledge. Let D be a dataset consisting of N pairs of images and their
weak labels (xi,Wi), with x ∈ X and Wi ⊂ W.

The objective of weakly supervised semantic segmentation is to learn the same
function fθ as in equation 4.1 by optimizing a loss function

L(fθ|D, F ) = 1
N

N∑
i=1
L(fθ(xi),Wi, F ). (4.3)

4.2 Objectives

4.2.1 Learning from classic weak labels

Unlike prior work that designs ad hoc solutions for every type of supervision, WSSS
is tackled here in a principled and unifying manner. The goal is to support a variety
of weak labels for training by deriving learning signals from at least the four main
types of weak labels: image-level tags, points, scribbles, and bounding boxes.

Goal 1 Derive and incorporate learning signals from the four main types of weak
labels (image-level tags, points, scribbles, and bounding boxes) into the training
of the segmentation network.

4.2.2 Incorporating prior knowledge

Beyond the standard weak labels, segmentation networks can benefit from other
forms of indirect supervision during training. Examples include spatial priors (e.g.,
"object 1 is to the right of object 2 ", "if there is a tree, then the ground is below the
tree"), low-level structural constraints (e.g., "if a pixel is labeled with class c, at least
one of its neighbors must be labeled with class c), and high-level domain-specific
knowledge (e.g., "if there is a boat, the image must contain water"). Therefore, this
thesis aims to enhance the learning process with signals derived from first-order logic.

Goal 2 Derive and incorporate learning signals from first-order logic, including
quantifiers over finite domains, into the training of the segmentation network.

Note that restricting quantifiers to finite domains does not limit the expressiveness
in this setting since logical objects are network outputs, and thus, their set is finite.
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4.2.3 Outperforming other WSSS methods

Because other works exploit a single type of weak label, a reasonable goal is that
the proposed system obtains more accurate segmentation results when multiple
annotation types are available. Intuitively, spending more effort on annotation
should result in higher-quality predictions.

Goal 3 Consider a dataset of images I, split into training and testing sets Itrain
and Itest, along with bounding-box annotations bkn and scribble annotations skn
for every object of interest k present in each training image In ∈ Itrain. Let
Wtrain be the set of all weak annotations available for the training set, where
Wn
train = {bin|i ∈ [1..k]} ∪ {sin|i ∈ [1..k]} are thus the weak labels for the nth

training example. Let F be the set of logic formulas that the model aims to
maximally satisfy during training. Lastly, consider the ground-truth segmentation
masks Mtest for every image of the test set.

Then, after training with (Itrain,Wtrain, F ), the segmentation network should
outperform methods that exploit a single type of weak label on the test set Itest,
as measured by the mIoU with respect to Mtest.

The focus is therefore limited to datasets annotated with bounding-box and
scribble labels, as these achieve a balance between (1) the ease of annotation and
(2) the amount of information provided. Notice that with these annotations, the
method receives more localization and spatial information than methods that exploit
only image-level tags, only points, or only one of the bounding box and scribble
annotations, and hence should outperform those methods.

As the majority of works in the literature measure the quality of predictions
through the mean intersection over union (mIoU), this thesis also adopts this metric
in the evaluation. This approach then additionally assumes access to ground-truth
segmentation labels for the test set to compute the mIoU. This is also a fair assumption
in a practical setting, as a (smaller) set of fully annotated segmentation masks serves
to quantify the quality of the segmentations produced.

23





Chapter 5

Proposed method

This chapter introduces and details the proposed system. It begins with an overview
of the method, highlighting the novelties and justifying the choices made. Then, it
describes the proposed method in depth in the following two sections, organized along
the two main stages of the proposed framework: a weakly supervised training of SAM,
followed by a fully supervised training of a segmentation network on pseudo-labels
produced by SAM. As the majority of the contributions of this thesis are in the first
stage, the discussion focuses more extensively on that part.

5.1 Overview
To reiterate the context, WSSS aims to train a segmentation model based solely on
weak annotations, finally obtaining a network that can operate independently at
inference time on unseen images. At the same time, this thesis aims to facilitate
learning from various types of weak labels as well as other prior knowledge.

To achieve these goals, the proposed framework addresses WSSS through a two-
staged pipeline designed to accommodate weak supervision while also ultimately
producing a prompt-free segmentation network. Figure 5.1 provides a visual repre-
sentation of the approach. This two-staged workflow is standard, as illustrated in
the related work chapter. At a high level, it follows these steps:

1. Weakly supervised fine-tuning of the Segment Anything Model
(SAM) through indirect supervision signals derived from logical constraints

2. Fully supervised training of a segmentation network with the pseudo-
labels as ground truths

In the first stage, the method uses bounding-box prompts as input for SAM to
produce masks for each object instance. It then merges these masks to create a pseudo-
segmentation label for the entire image - that is, a segmentation mask generated
without manual annotation. Although SAM provides high-quality predictions in
various zero-shot contexts, the proposed system further improves segmentation
results by training SAM to maximally satisfy the set of given formulas F . These
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Figure 5.1: Overview of the proposed method, as a two-stage pipeline.

formulas capture both high-level properties present in the training images and
low-level structural properties that the predicted masks should satisfy. Grounding
these formulas combines network outputs with logical fuzzy connectives, producing
differentiable learning signals. Most WSSS techniques treat foundational models
as static pseudo-label generators, focusing solely on designing better prompts. In
contrast, this work fine-tunes SAM with the indirect forms of supervision previously
obtained before using it to generate pseudo-labels for the training samples. In this
latter phase, the trained SAM directly produces masks when prompted with weak
prompts, specifically bounding boxes.

The last step acts as a standalone, separate part of the process. It involves
training a segmentation model using the previously obtained pseudo-labels. This
training treats the pseudo-labels as ground truth data in place of the usual manual
pixel-wise annotations. This training is easily reproducible and follows standard
training pipelines set in previous studies.

5.1.1 Novelty

The proposed method contributes to WSSS from two perspectives. First, from a
capability standpoint, the system supports learning from various forms of indirect
supervision. Although some earlier works discussed in a previous chapter have
explored learning from all of the classic weak labels [37, 90] in the problem of image
segmentation (bounding boxes, scribbles, points, and image-level tags), they do not
leverage of recent advances in semantic segmentation. Furthermore, they overlook
other prior knowledge that may be available for a specific task. This thesis argues
that predicate logic provides a flexible framework for incorporating prior knowledge
into the learning process. This universality is especially valuable in practice, where
multiple learning signals can compensate for the coarse level of annotation associated
with weak supervision.
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Second, from a methodological perspective, this thesis demonstrates the use
of a neuro-symbolic framework for semantic segmentation, a largely unexplored
research direction. The proposed framework blends logical reasoning and neural
networks, sitting at the intersection between Logic Tensor Networks [2] and semantic-
based loss construction [22]. The fuzzy operators employed are particularly suitable
for expressing constraints over segmentation outputs, enabling an efficient and
differentiable computation of semantic loss terms. The proposed set of constraints
facilitates training, achieving state-of-the-art results on two different benchmarks,
Pascal VOC 2012 [24] and LGG segmentation [64].

5.1.2 Reasoning

Three choices shape the approach. Firstly, splitting the training process into two
stages adds flexibility and, more importantly, ensures alignment with the desired
outcome of the WSSS problem, namely obtaining a prompt-less segmentation network.
Secondly, the choice of Segment Anything as a pseudo-labeler provides reliable baseline
performance for pseudo-label generation. Lastly and most notably, a tailored set
of fuzzy operators enables expressing and learning from complex constraints in a
weakly supervised setting, forming the core contribution of this thesis.

Staged training Most methods tackle WSSS by splitting the learning process
into the two stages previously mentioned. The primary motivation stems from the
outcome required by the problem of weakly supervised segmentation, as defined in
Section 4.1. More specifically, even though the training employs weak labels, the
final segmentation network should perform inference on new images, without the use
of additional labels or hints as input. The second stage of the procedure achieves
this with a fully supervised training of a segmentation model.

Additionally, many studies demonstrate that the second-stage network achieves
higher segmentation accuracy than the one trained in the first stage [49, 94]. While
not a formal justification, especially since the performance is measured on two
different splits of the data, this result aligns with the findings of other studies [71],
which demonstrate that neural networks are robust even when learning on noisy
labels. In this case, the segmentation network trained in the second stage learns
to identify the common, correct patterns that appear in input images and their
pseudo-labeling while simultaneously learning to ignore the less common, incorrect
parts of the segmentation seeds.

An alternative worth considering is the adoption of a single-stage training pipeline
in place of the proposed method. Despite the benefit of simplifying the training
process, such a method sacrifices flexibility. For instance, the two-stage strategy is
particularly suitable in resource-constrained environments. Accurate pseudo-labels
obtained from SAM are likely to lead to improved segmentation performance for
a second-stage training of a lightweight segmentation network, compared to the
alternative of directly training it with coarse signals from weak supervision. Section
7.3 further emphasizes this as a direction for future work.
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Segment Anything for pseudo-labels Recent works in the WSSS literature
utilize large, foundational models to generate accurate pseudo-labels. While using
CLIP in this context has its merits, this thesis focuses on analyzing and improving
masks produced by SAM. Two key factors motivate this choice, namely (1) SAM
directly performs segmentation, and (2) SAM exhibits a strong baseline performance
when prompted with bounding boxes [32], a type of weak label that the proposed
system also learns from.

The related works chapter showed that most techniques focus on designing or
learning more effective prompts for the foundational models. However, given the
interconnectivity of this thesis with logic and the differentiable signals derived from
it, a weakly supervised fine-tuning of SAM with these signals as part of the loss
function represents a more logical direction.

Differentiable logic On the one hand, training a neural network with (soft) logical
constraints implies being able to express these constraints on the network outputs,
facilitating backpropagation. On the other hand, segmentation is, in part, defined
by the large dimensionality of the predicted mask, as opposed to a task such as
classification. Therefore, these two perspectives show that scalability is crucial when
incorporating logic over the outputs of a segmentation network.

To show the necessity of operators with fuzzy semantics, this discussion first
examines probabilistic logic as a potential choice for a differentiable framework. In
this context, the network outputs directly represent probabilities by using a final
Softmax layer. Given the success probability p of a formula ψ to learn from, using the
learning signal −log(p) corresponding to the negative log-likelihood loss maximizes
the success probability of ψ. The primary challenge of probabilistic logic is the efficient
computation of the success probability for an arbitrary formula, which is closely
tied to the weighted model counting problem. Consider the bounding box tightness
prior [46] expressed only on rows, i.e., "every row of the predicted mask contains at
least one pixel with the class of the bounding box". Given a predicate Class(i, j, c)
that is true when pixel on row i and column j has class c and a bounding box with
class c represented by its upper-left and bottom-right coordinates (ymin, xmin) and
(ymax, xmax), the first-order logic formula for this constraint (assuming an extended
syntax for bounded quantifiers) is

∀i ∈ [ymin, ymax] (∃c ∈ [xmin, xmax] Class(i, j, c)) (5.1)

The success probability of the formula, given the output probabilities p̂ of the
segmentation network, has the expression:∏

i∈[ymin,ymax]
(1−

∏
j∈[xmin,xmax]

(1− p̂i,j,c))). (5.2)

Computing this formula is linear in the size of the bounding box. For a slightly
more complex constraint such as "every row and every column of the predicted mask
contains at least one pixel with the class of the bounding box", there is no simple
formula. WMC (WFOMC) remains the only viable method for exact computation;
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Figure 5.2: First stage: weakly supervised fine-tuning of SAM

however, it is intractable for constraints involving this many variables (predicates), as
the global dependencies involved prevent a factorization such as the one in Equation
5.2.

In contrast, predicate fuzzy logic is a more scalable and practical approach.
Instead of dealing with uncertainty in terms of probabilities, fuzzy logic models
vagueness through degrees of truth. It is particularly suitable for training neural
networks, as most fuzzy operators are differentiable by design. This allows the opti-
mization of fuzzy logic constraints as part of the loss function. Although probabilistic
inference also supports differentiation [58], fuzzy approaches offer a more efficient
inference process, an aspect of utmost importance in the task of image segmentation.

5.2 First stage: Weakly supervised fine-tuning of SAM

This section performs an analysis of the first stage in the proposed workflow. Fig-
ure 5.2 illustrates the architecture along with the key components involved. The
discussion proceeds by examining each component individually, following a logical
order.

5.2.1 Inputs

The first stage benefits from a training set consisting of images Itrain, as well as weak
annotations Wtrain. As this thesis aims to create a general framework for learning
with any weak label types, depending on their availability, the method does not
require the presence of a particular label type. However, it does require at least one
weak label to be present for each object instance in an image, such that SAM can
produce a mask for that object. Without losing the universality of this method, the
sections that follow assume that bounding boxes for every object act as prompts for
SAM.

Additionally, the method relies on a set of logic formulas F. As noted in Section
5.2.5, expressing prior knowledge as first-order logic formulas is an essential part of
this framework, requiring careful and thoughtful design. These formulas serve as the
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foundation of learning, as the framework interprets them through fuzzy semantics
and incorporates them in the construction of loss functions.

5.2.2 Segment Anything

While most prior techniques design or learn better prompts for SAM, this approach
instead improves segmentation accuracy by fine-tuning the model. Given the large
number of parameters, it is impractical to train all of them. The image encoder of
the largest model (ViT-H), in particular, contains 636 million parameters.

Freezing both encoders while keeping the lightweight mask decoder trainable
addresses this issue. This choice is simple yet effective, striking a balance between
segmentation performance and resource efficiency.

From a semantic and quality standpoint, given its immense scale and pretraining,
the image encoder already produces rich embeddings that possess all the properties
required for downstream tasks. Similarly, fine-tuning already specializes in converting
prompts into a meaningful representation for the model. Thus, the mask decoder offers
the most significant potential for performance improvement, having the capability of
(1) extracting the relevant semantics from the image embeddings and (2) using the
localization information as given by the prompt encoder.

Notably, training only the mask decoder reduces the resources required and the
training time. Since image embeddings are static during training, pre-computing and
storing them removes the need for forward (and backward) passes through the image
encoder during training. This observation holds when training does not include
image augmentations.

These training settings enable the use of SAM-huge, the largest of the Segment
Anything models, with significant performance gains over smaller versions. Although
the mask decoder does not support a batched input of image embeddings, it does
allow batched inference with multiple prompts per image. As stated previously,
without loss of generality, bounding boxes serve as inputs to the prompt encoder.
This choice relies on the results obtained by Jiang et al. [32], which show that
prompting SAM with bounding boxes produces pseudo-labels of higher quality than
prompting with other types of labels. GPU memory usage can vary because each
image may contain a variable number of objects, i.e., a variable number of bounding
boxes. For the experiments in this thesis, however, this first stage uses less than 10
GB of VRAM.

5.2.3 Mask unifier

For each prompt, SAM produces three binary segmentation masks, each associated
with a confidence score. The multi-mask output intends to solve ambiguities that
arise from prompts. For instance, when a point is placed on a car wheel and serves
as prompt, it is unclear whether the desired target is the wheel or the entire car. In
this sense, for each bounding box prompt, the mask unifier selects the binary mask
with the highest score. More sophisticated selection schemes exist, especially in a
multiclass setting. However, they are redundant, considering that fine-tuning of the
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mask decoder also affects the scoring. Therefore, taking the mask with the highest
score delegates the resolution of ambiguities to the fine-tuning process.

More importantly, two challenges emerge due to the class-agnostic nature of
SAM.

Firstly, when provided with a prompt, SAM produces a binary mask that distin-
guishes foreground and background, with no information of classes. The first step in
constructing a coherent, multiclass segmentation mask is to assign the foreground in
each binary mask the label of the bounding box used for prompting.

A second challenge emerges when these binary masks overlap, introducing ambigu-
ity in the resulting multi-class segmentation map. To address this, the mask-merging
procedure described in detail in Algorithm 1 combines the binary masks by selecting
the most probable outcome. More specifically, given the set of binary masks and the
corresponding class labels derived from the bounding box prompts, the algorithm
constructs a H ×W × C tensor of log probabilities. Each channel in the tensor
corresponds to one class and contains per-pixel confidence scores for that class. For a
given class, the mask is obtained by taking the element-wise maximum over all binary
masks associated with that class. This algorithm treats the background separately,
as the absence of any foreground prediction. Finally, a log-softmax operation applied
across channels transforms the confidence scores into log probabilities. This operation
is numerically stable.

Algorithm 1 Mask-merging procedure for constructing the multi-class log-probability
map

1: Input: List of masks {mi}Ni=1, class tags {ti}Ni=1, number of classes C
2: Returns: Log-probability tensor Z ∈ [−∞, 0]C×H×W

3: Initialize all elements of Z with −∞
4: for i = 1 to N do
5: Zti ← max(Zti ,mi) # aggregate scores for each class
6: end for
7: Z0 ← −max(Z1:C , dim = 0) # background = negative of max foreground
8: Z ← log Softmax(Z, dim = 0) # normalize to log-probabilities
9: return Z

This procedure clearly shows that backpropagation does not occur through all
network outputs. Instead, only the most confident predictions which form the tensor
of log probabilities of shape H ×W × C are part of the computation. This form
enables reasoning using fuzzy semantics, as detailed in the following sections. Besides
the simplification, focusing on the most confident predictions is beneficial from a
learning perspective. A wrong, high-confidence prediction receives a stronger penalty
and implicitly affects the discarded predictions.

5.2.4 Differentiable logic in the logarithm space

WSSS relies on indirect supervision signals originating from sparse and weak annota-
tions such as scribbles, bounding boxes, or other background knowledge. These do
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not directly constrain what the network predicts. Instead, the network learns from
the structured, higher-level relationships expressed over regions of the image. To
connect the high-level constraints with the low-level predictions of neural networks,
this differentiable logic framework operates directly on the low-level outputs of the
neural network. This approach employs first-order fuzzy logic with the product
t-norm, defined in logarithmic space. Operating in log-space ensures numerical
stability and compatibility with neural network outputs, particularly when handling
high-dimensional segmentation maps.

Syntactically, formulas in this logic are constructed from terms, predicates,
logical connectives, and quantifiers. Terms represent objects in the domain, such
as pixel coordinates and class labels. Predicates express properties or relations
over these terms. Interpreted predicates such as Class(i, j, c), which expresses that
pixel (i, j) has class c, differ from predicates such as Scribble(P, c) that symbolically
encode weak forms of supervision. The standard logical connectives - conjunction
(∧), disjunction (∨), negation (¬), implication (→) - combine predicates and other
subformulas. Universal (∀) and existential (∃) quantifiers range over finite domains
and contribute to the expressivity of this logic.

In terms of semantics, in fuzzy logics, truth values correspond to the interval [0,
1], where zero means completely false and one corresponds to entirely true. Instead,
a grounding function G grounds the formulas in this logic to tensors with values
in the interval [−∞, 0]. Additionally, G grounds logical connectives and quantifiers
to fuzzy operators that operate on tensors. This definition of grounding is similar
to the one in Logic Tensor Networks [2], departing from the common meaning of
the term that refers to substituting variables with constants or terms. Also notably,
the negation, conjunction, disjunction, and implication operate element-wise on the
tensor inputs. At the same time, the quantifiers work in a vectorized manner across
a dimension or over the entire input tensor.

Connection with the neuro-symbolic literature The method described re-
sembles Logic Tensor Networks and logLTN [3] in particular, as both rely on fuzzy
semantics in the logarithmic space and operate on tensor data. LTNs are generic
frameworks suitable for various applications, making the logic explicit by model-
ing predicates through neural networks, with the raw inputs serving as terms of
these predicates. In contrast, the tailored implementation in this thesis addresses
segmentation by directly operating on the network output, a tensor ẑ with shape
H ×W × C, in line with the literature on semantic-based regularization. Predicates
such as Class(i, j, c) serve only to illustrate the logical formulas involved and the the-
oretical foundations for this thesis. Notably, although both operate in the logarithm
space, this implementation departs from the operators for negation, disjunction, and
aggregation defined in logLTN.

Thus, the proposed system aligns with the LTN framework, belonging to the same
family of differentiable fuzzy logics that operate on tensors in a scalable manner. Still,
the focus is on creating loss terms from network outputs, similar to semantic-based
regularization techniques; however, these terms serve as the only supervision signals
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here. Borrowing from these frameworks enables the proposed system to successfully
tackle segmentation, a direction the literature has yet to explore.

Negation The grounding of the negation connective ¬ is a fuzzy negation operator.
More specifically, it is the log-space equivalent of the strong negation NP (x) = 1− x,
which corresponds to NlogP (x) = log(1 − ex), also referred to as the log1mexp
operation. Therefore,

G(¬ψ) = NlogP (G(ψ)) = log(1− eG(ψ)) (5.3)

In practice, this operation is numerically unstable if performed naively. To solve
this issue, log1mexp is computed with the method proposed by Mächler [63], which
handles two cases, depending on whether x is small or large, using numerically stable
implementations of the log1p(x) = log(1 + x) and expm1(x) = ex − 1 operations.
More specifically:

log(1− ex) = log1mexp(x) =
{

log(−expm1(x)) 0 < x ≤ log(2)
log1p(−ex)) x > log(2)

(5.4)

LogLTN, in contrast, does not use a negation operator, opting to express (or
convert) formulas in negative normal form (NNF). While this does not limit the
expressivity of the language, the process may alter the truth values of formulas.
Concretely, a limitation of logLTN that the authors also identify is that it does not
preserve logical equivalences. Not defining a negation operator also implies that the
fuzzy operator configurations defined are not symmetric, i.e., the disjunction is not
the dual co-norm of the conjunction.

Conjunction In this work, the grounding of the conjunction ∧ originates from the
product t-norm TP (x, y) = x · y. Again, the log-space equivalent TlogP replaces the
original formulation:

G(ψ ∧ ϕ) = TlogP (G(ψ), G(ϕ)) = G(ψ) +G(ϕ) (5.5)

This choice mainly stems from the properties of the gradient of TlogP . More
specifically, the gradient with regard to either one of its inputs is 1, ensuring that
there are no vanishing or exploding gradients during backpropagation.

Other fuzzy t-norms lack these properties and are therefore unsuitable for training
neural networks. For instance, the original product t-norm TP has non-zero gradients
for both of its inputs. Still, the gradient itself can have a significant variation
of scale, depending on the values of x and y, possibly leading to exploding or
vanishing gradients when chaining multiple conjunction operations. The Gödel t-
norm TG(x, y) = min(a, b) is unsuitable for learning because it is single-passing [79],
meaning that during backpropagation, only one of the inputs has a non-zero derivative.
Other t-norms such as the Łukasiewicz t-norm TLK(x, y) = max(x+ y − 1, 0) stop
the gradient propagation entirely when the sum of x and y is smaller than 1 [79].
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Disjunction The implementation of the disjunction ∨ operator combines the
conjunction and negation operators defined previously, using de Morgan’s law:

G(ψ ∨ ϕ) = G(¬(¬ψ ∧ ¬ϕ)) (5.6)

This formulation corresponds to the dual co-norm of TlogP and ensures that
disjunction inherits the numerical stability and other properties of the conjunction
and negation operators. Like the log-space conjunction, this implementation for
disjunction supports differentiable reasoning without the risk of vanishing or single-
passing gradients.

An operator such as Log-Sum-Exp may require less operations and may be
more numerically stable. Still, it risks exceeding the upper bound of the [−∞, 0]
domain of log probabilities because it corresponds to a sum of probabilities that
ignores double-counting. Thus, further chaining Log-Sum-Exp with the negation
operator is not possible, affecting the expressivity of the logic. LogLTN uses a Log-
Mean-Exp operator instead, which is bounded by the maximum value of the tensor,
thereby resolving the issue with Log-Sum-Exp. However, this configuration again
loses interpretability from a probabilistic perspective, as the disjunction replaced by
Log-Mean-Exp receives a truth value lower than that of one of the terms within the
disjunction.

Implication For similar reasons to the choice of the fuzzy disjunction operator,
The Reichenbach S-implication replaces the implication connective:

G(ψ → ϕ) = G(¬ψ ∨ ϕ). (5.7)

Quantifiers The previous connectives apply an element-wise operation on the
elements of their input tensors. For instance, the conjunction ∧ returns a tensor
with the same shape as the two input tensors, where each element is the sum of the
corresponding two elements of the input tensor. Universal and existential quantifiers,
however, use aggregation to reduce the dimensionality of the input tensor.

Crucially, for the problem at hand, this aggregation is expressive enough to support
two use cases: (1) aggregation across a single dimension of a multi-dimensional input
tensor and (2) aggregation across the entire input tensor (which can be single or
multi-dimensional). The implementation allows, thus, these two modes of operation.
In a style similar to the dim argument of PyTorch tensor operations, the two modes
differ by the presence or absence of this additional argument that specifies the
dimension used for aggregation.

The grounding of the universal quantification ∀ corresponds to the AUlogP aggrega-
tor, which is the conjunction of all elements of tensor x ∈ Rd1×d2×...×dn . Equivalently,
it applies the log-space product t-norm defined earlier to the elements involved in
the aggregation. The equations below show this more formally:
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G(∀x ψ) = AUlogP (G(ψ)) =
d1∑
i1=1

d2∑
i2=1
· · ·

dn∑
in=1

G(ψ)i1i2...in

G(∀kx ψ) = AUlogP (G(ψ), k) = y ∈ Rd1×···×dk−1×dk+1×···×dn ,

with yi1,...,ik−1,ik+1,...,in =
dk∑
ik=1

G(ψ)i1,...,ik−1,ik,ik+1,...,in

(5.8)

where ∀k refers to the quantification along the kth dimension of tensor x.
Similar to de Morgan’s law for conjunction and disjunction, the duality between

the quantifiers ∃xP (x)↔ ¬∀¬P (x) helps ground the existential aggregator AElogP :

G(∃x ψ) = G(¬∀x (¬ψ))
G(∃kx ψ) = G(¬∀kx (¬ψ)),

(5.9)

where ∃k refers to the existential quantification along the kth dimension of tensor x.
LogLTN uses a slightly different universal quantifier AUmean. Instead of a sum, it

performs the mean of truth values along the quantified dimension. The authors justify
this change by examining the size of the gradients. They find that the gradient
depends on the type of quantifier: the universally quantified formulas receive a
gradient of -m, where m is the number of objects quantified over, while existentially
quantified formulas receive a gradient of -1. Additionally, a universally quantified
formula with more domain elements receives a stronger gradient than one with fewer.

The first limitation is a byproduct of the Log-Mean-Exp-based aggregation
operator AELME used by logLTN in place of the existential quantifier. In this
framework, AElogP inherits the properties of the universal aggregator that it internally
uses, even though the negation operator also affects the gradients.

Regarding the second point, at least for the types of constraints relevant to WSSS,
there is no reason to force the gradients of formulas to be the same. What matters
more is that pixels receive similar supervision signals. Indeed, taking scribbles as
an example, a pixel that is part of a longer scribble should count equally towards
the loss as a pixel that is the only point in a scribble. The mean aggregator AUmean
used in logLTN instead distributes the gradient depending on the length of the
scribble, which means that the single pixel of the latter case weighs more on gradient
updates. The universal aggregation operator AUlogP defined earlier accounts for this
observation.

5.2.5 Constraints

The three-dimensional tensor of log probabilities ẑ ∈ (−∞, 0]H×W×C , which consti-
tutes the unified mask as predicted by SAM and merged by the mask unifier, serves
as the foundation for constructing logical constraints. The aim is to use network
outputs and express high-level first-order logic formulas derived from the available
weak labels or prior background knowledge.

Before describing the proposed constraints one by one, this section first introduces
more notation. Firstly, the predicate Class(i, j, c) has the informal semantics that
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pixel on row i and column j has class c. Consequently, the grounding of this predi-
cate corresponds to values of the network outputs ẑ, with G(Class(i, j, c)) = ẑi,j,c.
Additionally, a syntactic sugar notation replaces formulas that restrict quantifiers to
domains that satisfy a certain condition, such as ∀x (P (x)→ ψ), with expressions
like ∀x ∈ P ψ. This shorthand notation aligns with the grounding performed in the
system, which applies the aggregator operator over finite domains by enumerating
all possible cases.

This work defines six general-purpose constraints, with proven benefits for
training in the context of WSSS. This section introduces and analyzes them in
order by expressing them for an image xi and its weak annotations Wi. Weak
annotations correspond to symbolic predicates in these constraints. The predicate
Box(ymin, xmin, ymax, xmax, c) expresses a bounding box by its upper-left and
bottom-right corners, as well as the labeled class c. Scribble(P, c) denotes a scribble
with P being the scribble coordinates and c being their associated class.

ψbackground Informally, the background constraint ψbackground expresses that pixels
that are not within a bounding box belong to the background. The constraint has
the following expression for image xi with weak annotations Wi:

ψbackground = ∀i ∀j
(
¬∃ Box(ymin, xmin, ymax, xmax, c) ∈Wi

(ymin ≤ i ≤ ymax ∧ xmin ≤ j ≤ xmax)
)
→ Class(i, j, 0)

(5.10)
To improve clarity and to show the form specified in the implementation, the

following shorthand notation uses the set Outside(Wi) defined as the set of pixel
coordinates not covered by any bounding box in Wi. Using this definition, the
compact expression of the background constraint is:

Outside(Wi) =

(i, j)

∣∣∣∣∣∣ (i, j) /∈
⋃

Box(ymin,xmin,ymax,xmax,c)∈Wi

[ymin, ymax]× [xmin, xmax]


ψbackground = ∀(i, j) ∈ Outside(Wi) Class(i, j, 0)

(5.11)
This constraint provides a powerful learning signal for the background class, as it

is equivalent to the learning signals used in a fully supervised setting for those pixels.
This constraint is thus, in general, essential for learning the background regions in
images. However, under this specific setup with the Segment Anything model, its
impact is limited by the powerful prompt encoder and mask unification, which favor
predicting object masks only within the bounding boxes used as prompts.

ψbbox_tightness This constraint expresses the bounding box tightness prior [46].
In natural language, it expresses that every row and every column of a bounding box
contains at least one pixel with the class of the bounding box. For a single bounding
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Figure 5.3: Ground truth mask that shows the original formulation of ψbbox_tightness
is incorrect in a multi-class settings.

box b with (ymin, xmin) and (ymax, xmax) as as the upper-left and bottom-right
corners and class c, the following first-order logic formula expresses this constraint:

ψb =ψbrows ∧ ψbcolumns

ψbrows =∀i ∈ [ymin, ymax] ∃1j ∈ [xmin, xmax] Class(i, j, c)
ψbcolumns

=∀j ∈ [xmin, xmax] ∃0i ∈ [ymin, ymax] Class(i, j, c)
(5.12)

Thus, over all bounding boxes of image xi with weak annotations Wi, the formula
is:

ψbbox_tightness = ∀Box(ymin, xmin, ymax, xmax, c) ∈Wi ψb (5.13)

In a multi-class setting, an issue arises when an object with a class c1 completely
occludes an object with class c2 ̸= c1 across a row or column of the second object’s
bounding box. Thus, the constraints specified above are no longer true for that row
or column. This is evident in Figure 5.3, where the foreground object, namely the
person, occludes several columns corresponding to the bounding box of the horse. To
solve this issue, ψbrows accounts for the possibility that each row i of bounding box b
contains at least one pixel with the class of b or with the class of any other bounding
boxes that intersects row i of b. Similarly, ψbcolumns

imposes that each column expects
at least one pixel with the class of the current bounding box b or the class of any
other bounding box that intersects with b at that column.

ψscribbles The scribble-based constraint is equivalent to partial supervision, i.e., it
contributes with a loss term, which is the negative log-likelihood loss for the pixels
of the scribble. Concretely, this corresponds to the first-order logic formula:

ψscribbles = ∀Scribble(P, c) ∈Wi ∀(i, j) ∈ P Class(i, j, c). (5.14)
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Figure 5.4: An image and its oversegmentation into superpixels.

ψneighborhood and ψfill Two additional constraints ensure a low-level structural
consistency of network predictions, namely ψneighborhood and ψfill. These have the
purpose of propagating information across neighboring pixels and do not require any
form of weak annotations. Instead, they represent background prior knowledge.

Concretely, ψneighborhood specifies that if a pixel has class c, then at least one of
its neighbors should have the same class c. The first-order logic formula in this case
is:

ψneighborhood = ∀(i, j, c) ∈ [1, H]× [1,W ]× [1, C]
Class(i, j, c)→ (∃(i′, j′) ∈ N (i, j) Class(i′, j′, c)),

(5.15)

where N (i, j) = {(i′, j′) ∈ [1, H]× [1,W ] | |i′ − i|+ |j′ − j| = 1}.
Similarly, ψfill expresses that "if all neighbors of a pixel have the same class c,

then the pixel in the middle should have class c". The first-order logic expression is,
thus:

ψfill = ∀(i, j, c) ∈ [1, H]× [1,W ]× [1, C],(
∀(i′, j′) ∈ N (i, j) Class(i′, j′, c)

)
→ Class(i, j, c).

(5.16)

ψborder When fine-tuning SAM with the five constraints defined above, the network
corrects significant mistakes but loses fine details and precision around edges. There-
fore, an additional constraint named ψborder attempts to recover the fine structure of
the predictions.

More specifically, this constraint leverages an oversegmentation procedure, which
separates the image into superpixels [70], a grouping of adjacent pixels that are close
in terms of color and texture. Figure 5.4 depicts an example. Several algorithms
exist for producing such superpixels. This thesis uses the quickshift algorithm, with
a kernel size of 3 for the Gaussian kernel used for smoothing, a maximum distance
of 6 between clusters, and a color-space proximity to image-space proximity ratio of
0.5.
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Informally, the constraint imposed with the help of superpixels is that "if two
adjacent pixels have different classes, they belong to different superpixels". Optimiz-
ing to maximally satisfy this constraint is equivalent to maximally satisfying the
constraint "two adjacent pixels belonging to the same superpixel should have the
same class" due to the symmetric operations of the proposed logic. Indeed, the FOL
formulation below shows this more precisely:

ψdifferent_up(i, j) = ¬∃2c
(
Class(i, j, c) ∧ Class(i− 1, j, c)

)
ψdifferent_left(i, j) = ¬∃2c

(
Class(i, j, c) ∧ Class(i, j − 1, c)

)
ϕboundary_up(i, j) = Superpixel(i, j, s1) ∧ Superpixel(i− 1, j, s2) ∧ s1 ̸= s2

ϕboundary_left(i, j) = Superpixel(i, j, s1) ∧ Superpixel(i, j − 1, s2) ∧ s1 ̸= s2

ψborder_up = ∀(i, j) ∈ [1, H]× [1,W ]
ψdifferent_up(i, j)→ ϕboundary_up(i, j)

ψborder_left = ∀(i, j) ∈ [1, H]× [1,W ]
ψdifferent_left(i, j)→ ϕboundary_left(i, j)

ψborder = ψborder_up ∧ ψborder_left

(5.17)

5.2.6 Learning

As established by the problem definition in Section 4.1, the goal of WSSS is to learn
a function fθ by minimizing a loss function on a dataset D consisting of images and
weak labels (xi,Wi) using a set of formulas F. This definition links training of neural
networks with the concept of fuzzy maximum satisfiability [79], by aiming is to find
the parameters:

θ∗ = arg min
θ
L(fθ|D,F ) = arg min

θ

n∑
i=1
L(fθ(xi),Wi, F ). (5.18)

An important aspect is, therefore, expressing the loss function for a particular
training example (xi,Wi). Since the logic used operates over log probabilities, the
aim is to optimize the negative log-likelihood of each constraint:

L(fθ(xi),Wi, F ) = −
∑
ψ∈F

G(ψ), (5.19)

where G(ψ) denotes the log-probability-based truth degree of the formula ψ. Opti-
mizing here refers, naturally, to gradient descent methods available in the literature
on neural networks. The fully differentiable logic framework enables end-to-end
training.

5.2.7 Outputs

The first stage aims to obtain pseudo-segmentation labels for the training images.
Pseudo-labels are a concept introduced in the literature of semi-supervised learning
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[45], intended to provide a proxy for the true labels in cases of unlabeled data. In
the WSSS literature, they serve a similar purpose - in this case, they represent
pixel-wise annotations produced through automatic methods rather than through
manual procedures.

In this work, the fine-tuned Segment Anything model generates pseudo-labels
via the same mask-merging procedure. This time, instead of stopping at the level of
per-channel log probabilities, the mask ŷ corresponds to the channel-wise highest
(log) probability at each pixel from the H ×W ×C shaped tensor of log probabilities
ẑ:

ŷi,j = arg max
c∈C

ẑi,j,c. (5.20)

Some approaches further refine pseudo-labels using DenseCRF [10]. While this
may lead to improvements on some datasets, it requires tuning and hides the true
quality of the pseudo-labels produced. To maintain a clear assessment of the first
stage performance, the network outputs remain unchanged.

5.2.8 Other considerations

The training process uses PyTorch to maximally satisfy the imposed constraints.
It runs for 30 epochs using the Adam optimizer with a learning rate of 0.0001 and
no weight decay. Since SAM’s mask decoder does not support batches of images, a
gradient accumulation procedure simulates a batch size of 64 which stabilizes the
training in early epochs. Configuration files, such as the one listed in Appendix
A, Section A.1, specify the training settings and constraints used. Implementing a
constraint requires directly operating on the tensor of log probabilities and possibly
weak labels present in the image, as illustrated in Appendix A, Section A.2.

5.3 Second stage: Fully supervised training
This thesis contributes mainly to the first stage of the training process, aiming to
produce qualitative pseudo-segmentation labels for the images in the training set.
Consequently, their effect becomes visible in the second stage, where a segmentation
model receives full supervision from them. Creating accurate pseudo-labels is essential
in WSSS, especially in such a two-stage workflow. This is because noisy labels severely
degrade the generalization performance of neural networks [75]. This problem is even
more prominent for automatically generated labels, which suffer from the implicit
erroneous results associated with neural network predictions.

Despite this drawback, the fully supervised training with pseudo-labels remains
necessary for reasons enumerated in Section 5.1.2. This thesis adheres to established
practices from the literature in selecting both the segmentation model and train-
ing pipeline, thereby promoting a fair comparison between methods. Since most
WSSS works adopt the same two-stage workflow, they are directly comparable when
evaluating the same segmentation network on the same dataset. In this spirit, this
thesis aims to train three segmentation networks: Mask2Former [15], DeepLabV2
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[11], and ConvNeXt-UPerNet [55, 87]. The choice among them depends on the
guidelines established by previous works. DeepLabV2 and ConvNeXt-UPerNet enable
a direct comparison with existing WSSS methods, whereas Mask2Former pushes the
performance even more.

The MMSegmentation toolbox [61] assists in training the Mask2Former segmen-
tation model. This open-source tool facilitates the development and training of
segmentation models, offering out-of-the-box support for a wide range of models and
datasets. More concretely, this work uses the same training configuration as other
works that adopted Mask2Former [94, 49]. From a model configuration perspective,
this training uses the Swin-L [54] backbone. Learning occurs over 80,000 steps, with
a batch size of 4 and a learning rate of 1e-4, while all other training settings remain
consistent with the Mask2Former configuration in MMSegmentation.

Training a DeepLabV2 model demonstrates the effectiveness of learning from
high-quality pseudo-labels while positioning this work more clearly among other
approaches in the literature in terms of segmentation accuracy. Instead of utilizing
the MMSegmentation toolbox, this training uses a PyTorch re-implementation of
DeepLabV2 [36], with its default settings.

To align with previous work in the medical domain, this thesis also trains a
ConvNeXt-UPerNet architecture. The network utilizes the ConvNeXt-tiny backbone,
which has an input image size of 384x384, and is pre-trained on ImageNet-1k.
Other training settings follow the instructions of SimTxtSeg [89], starting from the
configuration file of ConvNeXt-UPerNet from the MMSegmentation toolbox.
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Chapter 6

Evaluation

This chapter showcases the effectiveness of the proposed method by evaluating it
both quantitatively and qualitatively on two different datasets: Pascal VOC 2012 [24]
and LGG segmentation [64]. The evaluation follows each level of interest: after the
first stage, it sets expectations for the performance of the second-stage training, and
after the second-stage training, it produces the segmentation network of interest in
the WSSS problem. A comparison of the key findings with those in previous studies
highlights the effectiveness of the proposed framework. Ultimately, an ablation study
assesses the impact that each constraint has on learning and additionally explores
other formulations for the set of fuzzy operators.

6.1 Evaluation metrics

This thesis reports results using the (mean) intersection over union metric used
throughout the WSSS literature [49, 52, 77]. Intersection over union (IoU) measures
the ratio between the common region of the prediction and ground truth and the total
area covered by both [42]. Unlike accuracy, which can be misleading in imbalanced
scenarios, IoU is particularly suitable as a metric for segmentation because it accounts
for any size ratio between the object of interest and the rest of the image. Given the
number of true positives, TP, the number of false positives FP and the number of
false negatives FN, the IoU [16] is:

IoU = TP

TP + FP + FN
. (6.1)

In binary segmentation, IoU measures the overlap between the foreground regions
of the prediction and target segmentation. In a multi-class setting, the evaluation
typically expands to the mean Intersection over Union (mIoU) [24], which corresponds
to the average of per-class IoU metrics [42]:

mIoU = 1
C

C∑
c=1

IoUc, (6.2)
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where C is the number of classes. This time, computing IoUc follows a binary
segmentation paradigm, with class c the positive class and all other classes the
background (negative) class.

For Pascal VOC 2012, this thesis reports the mIoU over all 21 classes, including the
background class, as per the official evaluation procedure. For the LGG segmentation
dataset, which involves binary segmentation, this thesis reports the IoU of the positive
class (tumor region). In this case, evaluating the overlap for the tumor class alone is
sufficient to assess model performance.

6.2 Pascal VOC 2012
The evaluation first proceeds on the benchmark Pascal VOC 2012 dataset [24] used
in the majority of WSSS works. Originally, it contained 4,369 images of 20 object
classes (21 classes, including the background), split into training, validation, and
testing, with 1,464, 1,449, and 1,456 images, respectively [49]. Researchers later
extended the training set to 10,582 images using the SBD dataset [29]. This thesis
follows the consensus among WSSS works, which is to use the augmented set for
training. The proposed method uses the bounding box annotations provided and the
scribble annotations obtained by Lin et al. [50]. The original pixel-wise annotations
facilitate the evaluation. An important note is that the test set is private, thus
obtaining results implies sending the predictions to the official evaluation server. In
the following sections, the train set refers to the original set of 1,464 images, the
trainaug set refers to the extended set of training images, while the val and test sets
stand for the original validation and testing sets.

6.2.1 Evaluation of the first stage

To set expectations for the performance of the second-stage network, it is important
to evaluate the pseudo-masks produced in the first stage. To this end, Table 6.1
shows the quality of pseudo-labels obtained by this method on the Pascal VOC
2012 train set. The proposed method extracts pseudo-labels of higher quality than
previous methods by leveraging the additional weak annotation data it is trained on.
Specifically, the produced pseudo-masks exhibit a 94.3% mIoU on the train set.
This result shows that fine-tuning improves SAM from the 91.5% mIoU obtained
by Jiang et al. [32] when selecting the third mask the multi-mask output and the
baseline of 90.5% mIoU when selecting the mask with the highest score. Figure 6.1
displays several pseudo-labels alongside the ground truth masks, confirming the
high mIoU score, while Figure 6.2 shows some erroneous results. By leveraging
bounding box annotations as prompts for SAM, the desired object instances are
always present in the segmentation. However, errors include incorrectly segmenting
the background co-occurring with classes of interest and imprecisely outlining objects
with fine details.

Table 6.2 shows an in-depth look at per-class results. The method corrects
significant mistakes and aligns SAM’s predictions to the semantics of the dataset.
For instance, the initial poor score on the table class shows that SAM segments
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Method Annotations mIoU (%)
CLIP-ES [52] Image-level, Language 75.0
SemPLeS [49] Image-level 78.4
VPL [93] Image-level, Language 80.1
FMA-WSS [94] Image-level 80.4
Sun et al. [77] Image-level 88.3
Box2TagBack [31] Boxes 90.2

Jiang et al. [32]

Image-level 61.9
Points 71.7
Scribbles 89.7
Boxes 91.5

Baseline SAM-huge prompted with boxes Boxes 90.5
This method Boxes, Scribbles 94.3

Table 6.1: Pseudo-label quality comparison on the Pascal VOC 2012 train set

Figure 6.1: Visualization of pseudo-masks generated by the fine-tuned SAM. On
the left is the ground truth, and on the right is the produced segmentation mask.

the tablecloth and does not include plates or cutlery in the mask, even though the
Pascal VOC labels do not make this distinction. Fine-tuning the model corrects
these issues, and the result thus significantly improves from 49.7% to 94.7% mIoU.
However, refining fine details for classes with a high score or classes such as bike is
challenging due to the coarse nature of the weak labels.

bg aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv

96.9 97.7 66.2 96.5 94.8 96.8 98.1 96.6 96.4 88.0 96.8 49.7 95.4 97.0 91.2 93.5 77.1 97.7 83.9 97.0 91.6
98.5 96.7 63.9 96.1 93.7 96.7 98.7 97.0 97.9 90.9 96.9 94.7 97.4 97.3 95.1 96.8 91.4 97.7 90.1 97.8 95.9

Table 6.2: Per-class IoU (%) of the 21 classes in Pascal VOC 2012. First and
second rows correspond to the baseline and fine-tuned versions of SAM, respectively.
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Figure 6.2: Visualization of erroneous pseudo-labels produced by SAM. On the
left is the ground truth, and on the right is the produced segmentation mask.

In addition to assessing the quality of predictions, the thesis also evaluates how
often pseudo-labels satisfy the imposed constraints. More precisely, Table 6.3 shows
the constraint accuracy for each constraint ψ that SAM is trained with, i.e., the
fraction of results that satisfy constraint ψ. Depending on the constraint, this
fraction is image-wise (what percentage of images satisfy the constraint entirely),
pixel-wise (what percentage of pixels satisfy the constraint) or row/column-wise
(what percentage of rows and columns of bounding boxes satisfy ψbbox_tightness).
For constraints that stem from weak annotations (ψbackground, ψbbox_tightness and
ψscribbles), imperfect annotations likely account for the difference to perfect accuracy.
For instance, not all bounding boxes are tight around the object, directly impacting
the training and the constraint accuracy of ψbbox_tightness and ψbackground. Figure 6.3
illustrates this point. For the low-level structural constraints ψneighborhood and ψfill,
the difference is significant when aggregating at the image level. Lastly, at first
glance, the ψborder constraint appears to be ineffective. However, learning fine details
is hard in a weakly supervised setting, and the omission of ψborder results in coarse
predictions with a ψborder constraint satisfaction of 43.14%, significantly lower than
even the baseline.

Constraint Aggregation level Baseline (%) Fine-tuned (%)
ψbackground Pixel-wise 99.88 99.96
ψbbox_tightness Row/Column-wise 98.15 98.97
ψscribbles Pixel-wise 93.86 97.62
ψneighborhood Image-wise 41.49 73.45
ψfill Image-wise 48.29 88.69
ψborder Pixel-wise 54.66 55.95

Table 6.3: Comparison of constraint satisfaction accuracy of the pre-trained SAM
and the fine-tuned SAM on Pascal VOC 2012 trainaug set

6.3 Evaluation of the second stage

The pseudo-label quality offers valuable insight into the potential performance reached
by the second-stage segmentation network. Higher quality correlates with better
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Figure 6.3: Examples of loose bounding box annotations.

segmentation outcomes. Since the ultimate goal of WSSS is precisely to obtain the
second-stage network, it is also essential to evaluate its performance.

Most WSSS methods train the DeepLabV2 model with a ResNet-101 backbone;
therefore, this thesis employs this standard. Table 6.4 shows the results in this case.
The pseudo-masks help this subsequent training outperform other methods on the
test set, with a 79.6% mIoU when using CRF post-processing. This score is close
to the 79.7% mIoU obtained by the training supervised by the original pixel-wise
annotations.

Method Annotations mIoUval (%) mIoUtest (%)
Full supervision [11] Pixel-wise labels 76.3 (77.7*) 79.7*

Scribble hides class
[97] Scribbles 75.3 75.3

TEL [48] Scribbles 75.2 75.6
AGMM [86] Scribbles 74.2 75.7

Chan et al. [8] Scribbles 76.2 -
Box2TagBack [31] Boxes 76.3 75.8

Sun et al. [77] Image-level 77.2* 77.1*
CLIP-ES [52] Image-level, Language 73.8 73.9

CLIP-CPAL [78] Image-level, Language 74.5 74.7
VPL [93] Image-level, Language 79.3* 79.0*

Jiang et al. [32]

Image-level 71.1 72.2
Points 69.0 68.7
Scribbles 75.9 76.6
Boxes 76.3 75.8

This method
(DeepLabV2) Boxes, Scribbles 77.6 (79.1*) 78.2 (79.6*)

Table 6.4: Comparison of WSSS methods with DeepLabV2 segmentation networks
on the Pascal VOC 2012 val and test sets. "*" denotes CRF post-processing [10].

To reflect the advances in segmentation, several works have shifted toward training
networks with a Vision Transformer (ViT) backbone. Following this trend, this thesis
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employs Mask2Former [15], a transformer-based segmentation model, and trains it
the pseudo-labels produced in the first stage. Table 6.5 shows a comparison with
other transformer-based WSSS methods. With an mIoU of 88.4% on the val set and
87.9% on the test set, this framework outperforms previous techniques. Notably,
there is a large margin of +5.0% mIoU on the test set over existing methods, mainly
because the methods that perform comparatively on the DeepLabV2 benchmark
have not trained the Mask2Former model.

Method Annotations mIoUval (%) mIoUtest (%)
Full supervision Pixel-wise labels 87.1 86.7

CoSA-MS [95] Image-level 81.4 78.4
WeakTr [102] Image-level 78.4 79.0
FMA-WSS [94] Image-level 82.6 81.6
DHR [33] Image-level 82.3 82.3
SemPLeS [49] Image-level 83.4 82.9

This method (Mask2Former) Boxes, Scribbles 88.4 87.9

Table 6.5: Comparison of WSSS methods with ViT-based segmentation networks
on the Pascal VOC 2012 val and test set.

Figure 6.4 illustrates a set of masks predicted by the Mask2Former model on
val set images, alongside the target labels. This second-stage training produces
a prompt-free network, but the results generally show a slight decline in quality
compared to the pseudo-masks produced by SAM. This aligns with expectations, as
Segment Anything is a powerful benchmark on in-the-wild images, whose training
does not compare in scale to the second-stage training of Mask2Former. Additionally,
these are unseen images, whereas the results of the first stage correspond to an
overfitting scenario, where the primary aim is to produce qualitative labels for the
trainaug set seen during training.

Table 6.5 shows that training on the generated pseudo-masks outperforms the
fully supervised training using the original labels of the dataset. In theory, this
result is unexpected since weakly supervised methods rely on sparse annotations
and should not surpass the performance of pixel-wise supervision. However, despite
being imperfect, the pseudo-labels are comparable to or better than the manually
annotated segmentations. Figure 6.5 illustrates this point by showing the two main
factors behind this outcome, namely (1) higher quality contours on the augmented
part of the dataset and (2) missing annotations for certain objects.

6.4 LGG segmentation
Medical image segmentation is a common task that typically requires fully annotated
segmentation labels. In addition to the time-related costs of annotating, it may
require domain expertise. To show the potential of the proposed framework in this
scenario, this section performs the same experiments on the LGG Segmentation
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Figure 6.4: Illustration of final segmentation results of the Mask2Former model.
From left to right: image, ground truth, Mask2Former prediction.

Figure 6.5: Instances with poor pixel-wise annotations. For each pair, the ground
truth is on the left, while the pseudo-label is on the right.

dataset [64]. It consists of 3,064 brain MRI images, along with manual annotations
of low-grade gliomas (i.e., benign brain tumors) present in these images. Thus, it
is a binary segmentation problem with only two classes - background and tumor.
Although the dataset does not come with a predefined split, this thesis adopts the
same strategy as SimTxtSeg [89] by splitting the dataset into three sets, with a ratio
of 8:1:1 for training (2,451 images), validation (306 images), and testing (307 images).

The dataset does not provide bounding box or scribble annotations. Instead,
this thesis derives them automatically from the ground truth segmentation masks.
Each image thus receives a single bounding box and a single scribble as annotations.
The extreme coordinates (topmost, leftmost, bottommost, and rightmost) of the
segmented area determine the bounding box. The scribble aggregates the points in a
path between two randomly sampled coordinates on the opposite sides of the contour
of the segmentation map, as computed by contour-finding OpenCV algorithm [65].
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Figure 6.6: Visualization of pseudo-masks generated by the fine-tuned SAM for the
LGG training set. Left to right: image, ground truth mask, predicted pseudo-labels.

6.4.1 Evaluation of the first stage

Table 6.6 compares pseudo-label quality on the LGG segmentation dataset [64]. With
an 82.3% IoU, the pseudo-labels obtained through this method significantly surpass
other WSSS methods. The fine-tuning improves upon the score of 78.0% obtained
by the pre-trained SAM model. This improvement is significant, considering that
tumors cover small areas of the mask (and thus mistakes are punished more in the
IoU computation) and do not have clearly defined edges. To illustrate this point,
Figure 6.6 shows a few examples of ground truth labels next to produced pseudo
masks.

Method Annotations IoU (%)

SimTxtSeg [89] Language 72.4

Baseline SAM-huge prompted with boxes Boxes 78.0
This method Boxes, Scribbles 82.3

Table 6.6: Pseudo-label quality on the LGG segmentation train set

6.4.2 Evaluation of the second stage

To provide a comparable study on how the pseudo-label quality translates to second-
stage training, this thesis adopts the ConvNeXt-tiny backbone used in SimTxtSeg
[89]. Although the decoder differs due to the absence of language input, the training
setup follows the regime established in SimTxtSeg.

Table 6.7 displays the comparison between this work and SimTextSeg and other
medical WSSS works. Again, with an IoU of 73.6% on the test set, this method
outperforms existing methods. Here, the larger difference between this WSSS method
and full supervision, which obtained 77.7% IoU, suggests that pseudo-labels fall
short in quality compared to ground-truth annotations, mainly due to the limited
effectiveness of foundational models such as SAM in underrepresented domains.
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Method Annotations IoU (%)

Full supervision (ConvNeXt) Pixel-wise labels 77.7

WeakPolyp [83] Boxes 63.4
BoxPolyp [84] Boxes 67.4
SimTxtSeg [89] Language 71.3

This method (ConvNeXt) Boxes, Scribbles 73.6

Table 6.7: Comparison of WSSS methods on the LGG segmentation test set.

6.5 Ablation study

An ablation study on the Pascal VOC dataset further explains how each constraint
affects the first-stage fine-tuning of SAM. To achieve this, the training uses five out
of the six constraints, removing one constraint in each experiment. Table 6.8 reports
the findings, where F denotes the set of six constraints described in the previous
chapter, used in the first-stage training. Scribbles have the largest effect, resulting in
a performance decrease of -2.2% without their partial supervision. Figure 6.7 shows
that removing ψborder accounts for a loss of quality around object boundaries due to
the coarse nature of the learning signals.

Constraints used mIoU (%)
F 94.37
F \{ψbackground} 94.25 (-0.12)
F \{ψbbox_tightness} 93.80 (-0.57)
F \{ψscribbles} 92.28 (-2.09)
F \{ψneighborhood} 94.30 (-0.07)
F \{ψfill} 94.22 (-0.15)
F \{ψborder} 93.04 (-1.33)

Table 6.8: The effect of removing each constraint, in terms of pseudo-label quality
for the Pascal VOC train set.

The impact of the ψbackground is limited in training SAM because the prompt
encoder ensures that predicted masks fit within the bounding box prompts. However,
it is essential in training an off-the-shelf network in a single stage, as it is the only
signal helping the network learn the background class. A one-stage training of a
U-Net [72] segmentation network, supervised solely by ψbackground, ψbbox_tightness and
ψscribbles illustrates this point and Figure 6.8 further emphasizes the importance of
each constraint derived from weak labels. Training with F = {ψbackground, ψscribble}
results in coarse masks, while using F = {ψbackground, ψbbox_tightness}, produces class
activation maps rather than segmentations, showing only the discriminant features
of the classes. Training with all three constraints shows how they complement each
other in reaching the desired outcome. Appendix D further motivates the choices in
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(a) with ψborder (b) without ψborder

Figure 6.7: Visualization of pseudo-masks produced by the trained model with
and without the boundary-preserving constraint ψborder.

{ψbackground,
ψscribbles}

{ψbackground,
ψbbox_tightness}

{ψbackground, ψscribbles,
ψbbox_tightness}

Figure 6.8: Predictions of a U-Net model trained with weak supervision, showing
the individual contribution of ψscribbles and ψbbox_tightness.

the current solution.
Additionally, this ablation study investigates the use of alternative fuzzy operators

in place of disjunction and quantifiers. The operators mentioned are those defined
in logLTN, namely the Log-Mean-Exp SLME and AELME , replacing both the dual
T-conorm SlogP and the existential aggregator AElogP , and the batch-size invariant
mean aggregator AUmean, in place of AUlogP . Table 6.9 shows that performance degrades
below that of the baseline pre-trained model when using Log-Mean-Exp and only
slightly improves when using the mean aggregator. In any case, the current symmetric
configuration significantly outperforms these alternatives.

Method mIoU (%)
Baseline SAM 90.5
This method 94.3

This method with SLME and AELME 86.38
This method with AUmean 91.87

Table 6.9: Ablation study on the fuzzy logic operators used, measuring the quality
of pseudo-masks on the Pascal VOC train set.
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Chapter 7

Conclusion

This final chapter summarizes the work and reflects on whether its goals have
been achieved. The chapter then discusses current limitations and, based on these,
proposes directions for future work.

7.1 Summary

An in-depth exploration of the related literature showed the main limitations of
current weakly supervised segmentation methods. Although WSSS as a topic has
received significant attention from researchers, most works derived ad-hoc techniques
for dealing with one particular type of weak labels. The few works that explore
learning from various forms of weak supervision have only exploited classic weak
segmentation labels (i.e., bounding boxes, scribbles, points, and image-level tags) and
do not leverage the current advances in the field of segmentation. Other, more recent
approaches that leverage large, foundational vision models only focus on image-level
or language-level supervision.

To address these limitations, this thesis proposed a framework for learning from
a heterogeneous set of weak labels and additional prior knowledge. Designed in
two phases, similar to most works in the literature, the proposed method first
trains the Segment Anything Model in a weakly supervised setting. Using high-
quality pseudo-labels obtained from the fine-tuned Segment Anything Model as
ground truth data, the second stage of the process further trains classic, prompt-
free segmentation networks. In the first stage, this method uses predicate fuzzy
logic to derive differentiable signals from available weak labels and additional prior
knowledge expressed as logical constraints. A custom, tensorized implementation of
operators with fuzzy semantics in the logarithm space in the spirit of Logic Tensor
Networks enables learning at the scale required for segmentation in the context of
its high-dimensional output space, i.e., the segmentation mask.

This framework is applied to a benchmark dataset, Pascal VOC 2012, and in
a practical setting involving brain tumor segmentation. In the former case, the
proposed method established a new state-of-the-art performance of 87.9% mIoU and
79.6% mIoU on the test set, using Mask2Former and DeepLabV2 as second-stage
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segmentation networks, respectively. This approach also excelled in the medical
domain, achieving a 73.6% mIoU when utilizing the ConvNeXt-UPerNet network.

The study aimed to understand and present the key empirical insights. Among
these are (1) outperforming full supervision and (2) quantifying the impact of
learning from constraints that express prior knowledge. Concerning the first point,
the previous chapter illustrated the quality of the pseudo-labels, which, in part,
surpasses that of manually annotated masks in the Pascal VOC dataset. Regarding
learning from prior knowledge, the ψborder constraint is especially impactful by
preventing a degrading performance along object boundaries, given the coarse nature
of weak annotations.

7.2 Limitations

While not a limitation in the strictest sense, the primary caveat of the approach is
its greater reliance on annotations compared to other WSSS works. While other
methods, especially those relying on the powerful, foundational vision models CLIP
and SAM, mainly exploit image-level tags and use language supervision, this method
requires bounding box labels for effective SAM prompting and greatly benefits from
scribble annotations, as shown by the ablation study. Thus, it perfectly represents
the trade-off between segmentation accuracy and annotation effort.

A limitation of existing WSSS methods also present in this work is the lack of a
stopping criterion or an indicator for checkpoint selection in the first stage of training.
Due to working in a weakly supervised setting, there are no full pixel-wise labels;
therefore, it is challenging to evaluate the performance. However, in practice, this
limitation is rarely an issue, as a small set of images labeled pixel-wise can serve as
evaluation during training in the first stage. An alternative consists of monitoring
the evolution of the fuzzy loss on a validation set. However, this does not perfectly
align with the objective of the first stage, which is to overfit on the training set
instead of generalize to a validation set. The empirical experiments conducted with
the ψborder constraint show no decline in segmentation accuracy, suggesting that a
possibility is training for as long as possible within the allocated time budget.

Finally, while this framework can express constraints to learn from image-level
tags or points, the experiments shown in this work do not focus on this set of
weak labels. This is because such labels provide only sparse information about
object presence and location, which translates to less informative constraints (e.g.,
∃(i, j) Class(i, j, c) for an image-level tag annotation with class c). In contrast,
existing weakly supervised methods for these types of weak labels rely on class
activation maps (CAM), which offer dense localization and expansion information.
In this sense, this thesis meets the first objective set in Section 4.2 only partly, as it
can express constraints based on image-level tags and points but does not evaluate
how effective these sparse signals are for learning.
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7.3 Future work
A direction of future work includes improving the current fuzzy operators. This
work also included testing other operators, such as the LogMeanExp operator for
disjunction or using the mean instead of the sum for the universal quantifier [3].
These attempts did not improve the results. However, further investigation into
these or other fuzzy operators may yield a performance boost.

Additionally, exploring a dataset such as CLEVR [35] can enable expressing and
learning from other types of weak labels (e.g., spatial relationship constraints such
as "the red cube is to the right of the blue cube"). This can help in understanding
the entire scope of the proposed system, with the possibility of learning from even
more types of weak signals expressed as first-order logic.

Ultimately, regarding SAM, a question is whether the two-stage approach was
indeed necessary. Future work should assess a single-stage training approach that
retains only the pre-trained image encoder and trains a custom decoder from scratch,
thereby removing the dependency on prompts. Moreover, there is a question of
whether SAM-predicted masks indeed improve quality-wise, or the method instead
improves the alignment of mask scores. Lastly, freezing the image and prompt
encoders proved to be the right choice for this thesis, enabling rapid development
and experimentation. However, with the assumption that more training resources
are available, additive parameter-efficient fine-tuning methods, such as low-rank
adaptation methods (LoRA) [28], might lead to improved segmentation quality.
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Appendix A

First stage training details

A.1 Configuration file for SAM fine-tuning on Pascal
VOC 2012

DATASET:
PATH: "./datasets/pascal_voc_2012"

TRAIN_SETUP:
CONSTRAINTS: [

"boxes",
"scribbles",
"background",
"neighborhood",
"fill",
"borders"

]
BATCH_SIZE: 64
EPOCHS: 30
VALID_EVERY: 1
LEARNING_RATE: 0.0001
WEIGHT_DECAY: 0.0
EXPERIMENTS_DIR: "./experiments"

MODEL:
N_CLASSES: 21

A.2 Example of specifying and implementing a
constraint

As an example of implementing a constraint, the following code illustrates the
implementation of the ψneighborhood constraint, building upon the framework of
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A. First stage training details

Flinkow et al. [27]:

Listing A.1: ψneighborhood implementation
import torch
import torch.nn.functional as F
from typing import Callable

from differentiable_logics.logic import Logic
from constraints.constraint import Constraint

class NeighbourConstraint(Constraint):
def __init__(self, device: torch.device, eps: float):

super().__init__(device, eps)

def get_constraint(
self,
log_probs: torch.Tensor,
_labels: list,

) -> Callable[[Logic], torch.Tensor]:
fill_value = -float(’inf’)

def constraint_fn(logic: Logic) -> torch.Tensor:
up = F.pad(log_probs, (0, 0, 1, 0), value=fill_value)[:, :, :-1, :]
down = F.pad(log_probs, (0, 0, 0, 1), value=fill_value)[:, :, 1:, :]
left = F.pad(log_probs, (1, 0, 0, 0), value=fill_value)[:, :, :, :-1]
right = F.pad(log_probs, (0, 1, 0, 0), value=fill_value)[:, :, :, 1:]
neighbors = torch.stack([up, down, left, right], dim=-1)
neighbor_exists = logic.EXIS_AGG(neighbors, dim=-1)
impl = logic.IMPL(log_probs, neighbor_exists)
return logic.UNIV_AGG(impl)

return constraint_fn
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Appendix B

More results on the Pascal VOC
2012 dataset

Figure B.1: More pseudo-masks for the Pascal VOC trainaug set. On the left, the
ground truth segmentation, and on the right, the pseudo-mask produced by SAM.
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B. More results on the Pascal VOC 2012 dataset

Figure B.2: More results on Pascal VOC val set using Mask2Former. Left to right:
image, ground truth segmentation, predicted mask.
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Appendix C

More results on the LGG
segmentation dataset

Figure C.1: More pseudo-masks for the LGG segmentation train set. On the left,
the ground truth segmentation, and on the right, the pseudo-mask produced by
SAM.
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C. More results on the LGG segmentation dataset

Figure C.2: More results on the LGG segmentation test set using ConvNext-
UPerNet. On the left, the ground truth segmentation, and on the right the predicted
mask.
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Appendix D

Single stage U-Net experiments

Research for this thesis included first gathering intuitions about the use of weak
supervision in segmentation. Before leveraging recent advances in segmentation
through the use of SAM, the experiments involved training a simple U-Net segmen-
tation model in a single stage on a simpler problem - examining only the background
and airplane classes of Pascal VOC. Rather than constructing losses with fuzzy
operators, this training used probabilistic logic to compute the log probability of
success of a large (propositional) formula involving the network outputs as variables.
Rather than expressing ψbbox_tightness on both rows and columns, it used only rows
in the computation. Additionally, rows already accounted for by scribbles were ex-
cluded from this computation. In short, this setting aimed to perform a probabilistic
inference using closed-formulas rather than WMC, exploiting tensorized operations
for a greater scalability to the requirements of segmentation.

Additional results Figure D.1 shows a few more examples of segmentation
masks predicted by the U-Net model, after training with ψbackground, ψscribbles, and
ψbbox_tightness. For an off-the-shelf, untrained network, this result shows the capability
of the model to learn in a weakly-supervised setting. Quantitatively, the weakly
supervised training achieved an F1 score of 80.6%, while a similar fully supervised
training obtained 85.1%.

Experimenting with a volume constraint An interesting constraint in the
problem of weakly supervised segmentation is a volume prior, such as "this image
is at least 20% filled with a dog.". A learning signal obtained using the dynamic
programming counting method proposed by Shukla et al. [74] helps training with
such a constraint. More precisely, this loss term can be expressed as:

logsumexpns=thlog p(
k∑
i=1

ŷi = s), (D.1)

where n is the total number of pixels in the image, th is a threshold computed based on
the number of pixels (e.g., for the 20% threshold, th = 0.2 ·n) and log p(

∑k
i=1 ŷi = s)

expresses the log probability that exactly s pixels are true (with true here meaning
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D. Single stage U-Net experiments

Figure D.1: Additional results on Pascal VOC val. From left to right: image,
ground truth segmentation, prediction of the U-Net model.

they belong to the positive class airplane). Although relatively slow, the volume
constraint with thresholds of 20%, 40%, 60%, and 80% (more refined intervals are
impractical for a human to annotate) improved the results to 81.6% F1. For efficiency
reasons, and because this constraint cannot be easily expressed in first-order logic, it
was not included in further experiments including the training of SAM.

Switching to fuzzy logic Because of the disjoint-sum problem, computing the
success probability for a FOL formula does not generally have a closed-form and
easy-to-vectorize equation. Computing the success probability of the bounding box
tightness constraint expressed both on rows and columns requires a general-purpose
solution for WMC, which does not scale to sizes of bounding boxes relevant to
segmentation. In this sense, and for expressing other constraints, the focus shifted to
fuzzy operators. Thus, learning from both rows and columns improved the F1 score
from 80.6% to 81.2%, even though the loss signals involved no longer represented
exact probabilistic inference. This, along with the possibility of expressing more
complex constraints and background knowledge, warranted the use of fuzzy logic
going forward.
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