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SINOPSIS

Odată cu utilizarea pe scară largă a ı̂nvăt, ării automate, cererea pentru aplicat, ii care valorifică

potent, ialul acestui domeniu a crescut substant, ial. Aceste tehnologii necesită o cantitate ma-

sivă de date pentru a satisface constrângerile de calitate, iar folosirea exclusivă a datelor reale

are uneori rezultate limitate. Această lucrare prezintă o modalitate de generare a unor imagini

cu fet,e umane folosind o ret,ea neurală generativă, cu aplicabilitate ı̂n problema segmentării

semantice a părt, ilor componente ale fet,ei. As,adar, folosind o ret,ea convolut, ională ca extensie

a generatorului, se obt, in etichete asociate imaginilor generate, cu un F1 mediu de 92.01%

pentru 18 clase semantice. Pentru a controla generarea, se realizează conversia unor valori

explicite de vârstă s, i gen către spat, iul de intrare al generatorului, cu ajutorul unei ret,ele de

tip perceptron multistrat. Imaginea produsă reflectă atributele cerute, cu o eroare medie de

4.47 ani s, i respectiv o acuratet,e de 95.53% a genului.

ABSTRACT

With the widespread use of machine learning, the demand for applications that leverage

the potential of this domain has increased substantially. Such technologies typically require

massive amounts of data in order to satisfy quality constraints, and using real data exclusively

sometimes leads to limited results. This paper presents a way of generating images with

human faces based on a generative adversarial network, with the purpose of being later used

for the task of face parts semantic segmentation. Therefore, through a convolutional neural

network added as an extension of the generator, semantic segmentation labels are obtained

for the generated images, with a mean F1 of 92.01% for 18 classes. To control the generation

process, a multilayer perceptron network is trained to map explicit values of age and gender

into the latent space of the generator. The generated images reflect the requested attributes,

with a mean age error of 4.47 years and a gender accuracy of 95.53%.



1 INTRODUCTION

We begin this chapter by offering an overview of the context that has inspired this paper,

along with mentioning the problem that it tries to tackle. We briefly present the objectives of

our research, along with the proposed solution for reaching those goals. Finally, we touch on

the results and introduce the structure of the following chapters.

1.1 Context

Data has always been essential to solving real-world problems using machine learning, and

more recently, deep learning, alongside the learning algorithm used and available computa-

tional power [23]. Although most of the early development of the field was focused on real

data, there have been some studies indicating the possibility of using artificial data in the

1990s to protect sensitive information in datasets [49]. However, the process of generating

completely new data points has become apparent after 2014, starting with the paper on Gen-

erative Adversarial Networks proposed by Ian Goodfellow et al. [17]. Since then, synthetic

data generation has become an actively researched topic, warranting papers that reflect on

the progress of the domain [34, 25] and how it has had multiple notable use cases such as

preserving privacy in healthcare [62], improving the performance of computer vision applica-

tions [61] or enabling the voices of digital assistants [59]. Moreover, the topic of synthetic

data has attracted public attention due to recent advances in image generation [46, 47], while

it has also created concerns related to the possibility of creating harmful artificial content,

namely deep-fakes [60].

With this context in mind, we explore the current capabilities of human face generation and

analyze ways of using it to create custom training data for building powerful computer vision

applications.

1.2 Problem

Machine learning researchers or developers often require the use of extensive labeled training

data. This usually implies using public data, which might not fit their problem. Because of

the nature of some target domains (for example, the medical domain [12]), data may not be

publicly available. Even if the public data exists and it fits the given problem, it might not

cover the full distribution of possible scenarios or it might contain certain unwanted biases

[36]. The alternative of acquiring real data and manually annotating it with proper labels
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later used in the training procedure is time-consuming and expensive [24].

To alleviate these issues, multiple techniques related to synthetic data have been proposed,

including using special software (for instance, 3D rendering engines [9]) or generative neural

networks [3, 17, 63]. With regards to face synthesis specifically, using 3D models has proved

to be useful in terms of the quality of annotations and control over the generation process

[61], but there still exists a domain gap between the rendered models and natural images [67].

The alternative of using a Generative Adversarial Network [17] reduces the gap, but obtaining

high-quality annotations and control over the generation is more difficult.

1.3 Objective

In this paper, we leverage the performance of a generative network in order to obtain a

framework for generating images of human faces, alongside corresponding labels, with control

over certain facial attributes. With this in mind, we aim to obtain semantic segmentation labels

of face parts and controllable age and gender attributes. Semantic segmentation represents

assigning a certain class for all pixels of an image, more precisely, in our case, face semantic

segmentation consists of annotating each pixel with a value corresponding to the element of

the face it is part of. We analyze the feasibility of the solution both qualitatively and through

the ease of use compared to other methods.

1.4 Proposed solution

In order to reach the previously mentioned targets, we use the StyleGAN2 [29] architecture. It

is a well-established and researched generative adversarial network that was trained to produce

human faces. We build upon the network in two directions that help reach our goal of creating

high-quality annotations and controllable synthesis.

Firstly, with a way to encode information about the controlled attributes of the person into

the latent space of the network, a face with the desired features is obtained. The latent space

of a generative network refers to a multi-dimensional space, from which random vectors are

extracted to serve as initialization or input to the generator network.

Secondly, in order to obtain the semantic segmentation of face parts, we update the gener-

ator network architecture with an extension that predicts per-pixel labels. This new part is

trained without affecting the weights of the generator network and works by transferring the

generator’s knowledge of a face currently synthesized onto the new task of assigning seman-

tic segmentation labels. This training was performed on a small set of manually annotated

images produced beforehand by the generator.

The developed solution proves to be effective in achieving the proposed objectives, namely face

generation with associated semantic segmentation labels. Moreover, the techniques involved
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may also serve as a baseline for creating synthetic training data for other tasks, as the approach

is not limited to the semantic segmentation task.

1.5 Results

As previously mentioned, the objective is twofold: to acquire semantic segmentation labels of

face parts and to obtain control over face attributes.

For the problem of semantic segmentation, the evaluation consists of measuring the quality

of the segmentation prediction on a set of carefully annotated images with metrics specific to

this task, including an overall metric for the entire image, and separate metrics for each of

the semantic classes. With this in mind, we report an overall accurate result of 92.01% mean

F1 score for 18 semantic classes, on a subset of the manually annotated images specifically

reserved for testing the solution.

In terms of control over attributes, the proposed solution is evaluated from the perspective

of both the accuracy and diversity of the generated samples, where we achieve high precision

of control (4.47 mean age error and 95.53% gender accuracy) while maintaining high sample

quality and diversity.

1.6 Paper structure

In the next chapter, we list our reasons for developing the human face generation framework.

We not only discuss the motivation behind synthesizing data in general but also reflect on our

choice of face generation and face semantic segmentation.

Following that, chapter 3 details the existing methods. After a brief presentation of the context

surrounding synthetic data, we explore a few concepts and work related to the problem at hand.

Based on previous solutions, we choose a couple of directions to investigate and integrate in

our framework.

In chapter 4, an overview of the proposed system is presented. This includes the overall

architecture and detailed views of each component, with an emphasis on the functionality

instead of the implementation.

The next chapter is strongly related to chapter 4, in that we detail the procedures involved in

developing the system, including specific implementations of each component.

In chapter 6, we build an argument for the relevancy of our work, by presenting the results

and comparing them to previous works.

Lastly, we reserve a chapter for drawing conclusions and mentioning further research directions.
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2 MOTIVATION

In this chapter, we reflect on the key concepts that establish the motivation behind this paper.

These factors include advancing research in synthetic data generation, which is vital to many

current applications, creating a cost-effective alternative for businesses that require the use

of massive amounts of data, and understanding the impact of artificial data on society. On

the topic of research, we also discuss the motivation for tackling the subject of human face

generation and face semantic segmentation and show its potential use cases.

Scientific motivation

With the development of machine learning and the strong interest shown by the research

community, new ideas and technologies are bound to emerge. Recently, this has been the

case with synthetic data, which has seen tremendous growth over the last few years. The

emergence of artificially generated data has been fueled in large part by the advantages it

offers over real data and its applicability in various sectors.

To explain further, consider using synthetic data in the context of developing a certain solution.

In a simplified and controlled scenario, the development of an initial solution is accelerated

[24]. Afterward, one can revert to running experiments in a real environment and solve the

smaller-scale problems that may arise.

Another aspect worth mentioning is that synthetic data is capable of improving the perfor-

mance of systems based on artificial intelligence in a variety of tasks, especially when mixed

with real training data [53]. This approach has been shown to have practical results in tasks

such as semantic segmentation of urban scenes [51], activity recognition based on sensor

data [11], or facial landmark detection [61].

Implications for businesses

From the perspective of a business that develops machine learning technologies, the success

of a solution relies in a major part on the data the algorithm or neural network is trained

on. As relevant data sources, businesses can generally employ the use of public or proprietary

data, both of which can help achieve a reasonable performance.

Data from external sources can be unreliable, whether it is not available due to privacy

concerns [12], is unfit for the problem at hand (i.e. the training labels do not correspond

to the requirements), or does not cover all of the scenarios in which the solution is expected
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to perform (i.e. training a solution on images with front-facing people, but expecting it to

perform under different head orientations).

Proprietary training data that was designed for the given task usually offers a great boost of

performance to a neural model. However, the acquisition process is expensive and laborious

[40]. Moreover, once acquisitions are made, one can return to fix a previous mistake only by

relabeling the existing data or by conducting new acquisitions.

Therefore, what motivates the use of synthetic data is its accessibility. Generating artificial

data is a process that requires technical expertise, but the results are high-quality, scalable,

and flexible. Synthetic data also severely diminishes potential privacy-related issues that may

arise when using real data [6], a topic that we will elaborate on in the following paragraphs.

Social impact

With the increasing volumes of data collected by businesses, the issue of digital privacy has

recently gained attention from the public, resulting in several legislative changes, most notably

the General Data Protection Regulation (GDPR) [15].

What motivates the use of synthetic data here as an alternative to real data is cases where

privacy issues arise. There have been studies, such as the one conducted by John M. Abowd

and Lars Vilhuber [2], that measure to what extent an artificial distribution of data resembles

the original one, while still complying with an imposed level of privacy.

In the case of human faces specifically, privacy aspects have also been researched, with Fadi

Boutros et al. [6] showing that one can obtain a high-performance face recognition system by

using a privacy-preserving dataset of synthetic faces, where identities from the original dataset

were not present in the generated dataset. Therefore, it is clear that privacy is an important

aspect to consider in the problem of generated faces, which motivates us to produce synthetic

data to be used for training in the downstream task of face parts semantic segmentation.

Human face generation and semantic segmentation

Face synthesis is an interesting and actively researched topic [28, 29, 30], in many ways

serving as a benchmark for measuring the quality of image generation methods. Among

its use cases, we can name content creation, video game character modeling, semantic face

editing [54, 55] and, notably, improving the performance of deep neural networks in tasks

that require processing human faces [61].

In addition, the task of semantic segmentation of face parts (or face parsing) has several

direct applications, such as background removal or blurring in video conferencing [26], face

beautification, or serves as an auxiliary tool for other applications, such as gaze tracking [8]

or person re-identification [70].
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3 EXISTING METHODS

In this chapter, we present the research ideas that form the foundation of this paper. We

start by offering a general context for the problem of data generation, with an accent on

artificial human faces. Afterward, we introduce a few concepts our work is based on. We

then proceed with details on work related to this paper, which can be divided into three parts.

Firstly, we give an overview of the most notable image synthesis methods. Following that,

we analyze ways of obtaining annotations for data generated by such image generators, in

our case - semantic segmentation labels. Later, we study a few techniques that achieve the

goal of controlling certain attributes of the generated image. Ultimately, we offer detailed

reasoning for the choices made in developing our solution.

3.1 Data generation context

Data synthesis is a broad topic and sub-domain of artificial intelligence with important ram-

ifications. Synthetic data refers to data obtained through the use of computer software or

algorithms, rather than through capturing aspects of the real world, as is the case of a pho-

tograph or sensory data, for instance. It is important to make the distinction between data

synthesis, which creates completely new data points, from data augmentation, which consists

of modifying already-existing real data in some way, such as applying geometric transforma-

tions (scaling, rotation, cropping, perspective changes) or color transformations (adding noise,

sharpness or color jitter) to an image or changing the pitch of an audio sequence.

As also stated in the previous chapters, synthetic data can bring certain advantages compared

to real data. It has been extensively studied because of its various applications, from overcom-

ing data scarcity to improving the performance of artificial intelligence systems or protecting

the rights to privacy.

However, its disadvantages are noteworthy as well. The harmful use of synthetic data through

deepfakes has generated concerns. ”Deepfake” [60] is the term used for artificially generated

content that aims to replace a real person’s identity, whether through video or audio, generally

with malicious intent. Even though there have been several research papers that focus on

detecting such malicious content [18, 16], it is crucial to understand and control the risks

associated with synthetic data generation technologies.

While notable early studies have been conducted on obtaining and using synthetic data in

different systems, mostly for privacy-related issues [49], significant progress in the field was

made together with the evolution of computer vision and the emergence of image generation
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neural architectures and learning techniques. On one hand, this evolution has been powered by

persistent improvements in hardware performance. On the other hand, accessible and efficient

frameworks such as PyTorch [41] and TensorFlow [1] have enabled the rapid development

of deep learning technologies.

An interesting application of synthetic data is the problem of human face generation. Having

recently improved to remarkable quality, synthetic faces play a key role in boosting the per-

formance of computer vision systems or modeling video game characters. What demonstrates

this recent surge in image quality are experiments such as the one conducted by Sophie J.

Nightingale and Hany Farid [39], where they show that participants are unable to distinguish

between real or synthetic faces, having only a 48.2% accuracy in this task.

3.2 Concepts used

Before exploring the following sections on related work and our chosen solutions, we must first

introduce a few fundamental notions. Initially, we present the details of Generative Adversarial

Networks. Secondly, we establish how they were adapted for the task of image generation,

through the use of Convolutional Neural Networks. Lastly, we elaborate on the metrics used

in the image generation task.

3.2.1 Generative Adversarial Networks

One of the breakthroughs in the context of data generation has been the use of the Generative

Adversarial Networks (GAN) framework for training, proposed by Goodfellow et al. [17].

They model the problem of data synthesis as a minimax game between two networks, named

the generator G and the discriminator D. The purpose of the discriminator is to distinguish

between real samples and fake samples produced by the generator. The role of the generator

is to create samples that follow the distribution of real data. The two networks are trained

simultaneously until they converge to a point where the discriminator is unable to fulfill his

task.

During the training process, the generator learns a function G(z) that maps input noise vectors

z onto the distribution of the data that is to be generated. At the same time, the discriminator

learns to assign the probability that a data point x comes from the real distribution rather

than the one learned by the generator, and we will refer to that probability as D(x).

The generator is trained to maximize the chance that samples produced are labeled as real by

the discriminator, by minimizing the equation:

log(1−D(G(z))) (1)

Simultaneously, the discriminator is trained by maximizing:
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log(D(x)) + log(1−D(G(z))) (2)

where x is some data from the real distribution and z is the input noise vector of the generator.

Since their proposal, GANs have been extensively studied and improved. To access their

effectiveness in the context of the highly-dimensional image generation problem, Convolutional

Neural Networks have been introduced as a basis for the generator and discriminator models,

instead of the multilayer perceptrons proposed in the initial paper.

3.2.2 Convolutional Neural Networks

The soaring popularity of the computer vision domain among research groups in the 2010s has

in large part been attributed to the performances that convolutional neural networks (CNNs)

can achieve in computer vision tasks, including image generation. They power the analysis

and representation of more complex and higher-dimensional problems, while maintaining a

reduced set of learnable parameters and satisfying memory constraints.

The overview of a typical CNN used for image classification is illustrated in Figure 1, where

the input image is passed through an image encoder that is composed of convolutional and

pooling layers. In order to classify the input image, the feature map is flattened and passed

through a feedforward network that in the end predicts probabilities that the input image

belongs to each class.

Figure 1: Typical Convolutional Neural Network [42]

The conventional convolutional neural architecture, initially used for other vision tasks, was

altered to better model the problem of image generation. Alec Radford et al. [45] introduced

the deep convolutional generative adversarial network (DCGAN). The architecture of the de-

veloped generator is displayed in Figure 2. The main change to the conventional convolutional

architecture consists of removing any pooling layers, which are replaced by upsampling layers
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in the form of transposed convolutions (deconvolution) for the generator, and strided convo-

lutions for the discriminator. This type of layer facilitates the learning of a custom upsampling

operation, required for mapping the lower dimensional input latent vector to the final image

space.

Figure 2: DCGAN generator architecture [45]

3.2.3 Image generation evaluation metrics

Properly assessing the performance of image synthesis models remains an active discussion

among the research community. The most popular metrics currently used for this task include

the Inception Score (IS) [52] and the Fréchet Inception Distance (FID) [20].

Both of them rely on the concepts of fidelity and diversity when comparing the distribution of

the generated data to the real distribution. Fidelity measures how close the generated samples

resemble the real ones, while diversity represents the amount of the real data distribution that

is covered by the generated data.

We mention the results of generator networks in the following section using FID and use it to

guide the choices for our system. The FID score aims to be an improvement over the Inception

Score, and relies on comparing the distributions of the real and fake (generated) feature maps

at the deepest layer of the Inception v3 model [58]. Assuming the real feature maps follow

a Gaussian distribution with mean and covariance matrix (µX ,ΣX) and the generated ones

follow a Gaussian distribution with mean and covariance matrix (µY ,ΣY )), the FID score is

computed as the Fréchet distance [14] between those distributions:

d2 = |µX − µY |2 + tr(ΣX + ΣY − 2(ΣXΣY )
1/2) (3)
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3.3 Related Work

The purpose of this section is to establish the connections between this paper and other

works that tackle the issue of face generation. We analyze all of the technologies in detail,

mentioning their advantages and limitations.

Since the purpose of our system is to generate training data for a downstream task (in the

case of this paper - face parts semantic segmentation), we follow three research directions:

• face generation, in order to identify the best-performing methods

• obtaining training labels associated with images, requiring semantic segmentation labels

in particular

• controllable synthesis, with the purpose of enabling the generation in underrepresented

cases

3.3.1 Face generation

The task of face synthesis has had some early solving attempts, but researchers struggled with

the high-dimensionality nature of this problem.

One of the first solutions came through the use of a 3D morphable model (3DMM) [5]. It

enables the possibility of estimating 3D faces from single images, based on minimizing a series

of parameters that form the representation of a face: shape, texture, pose, scale, illumination,

etc. After obtaining the initial estimation, the face can be manipulated in the parametric

space. Other works have developed their own representation of the 3D morphable model,

most notably the Basel Face Model (BFM) [43] and FLAME [33]. However, although they

can freely modify the face in the parametric space, one shortcoming of all of these methods is

that they rely on preexisting UV texture maps of faces for the initial rendering. That is, they

do not generate the original face. Most recently, 3DMMs have been incorporated into other

GAN-based neural models [35] that synthesize realistic faces based on the 3DMM parameter

priors.

Another early use of face synthesis has been in face recognition, which consists of identifying

or verifying one’s identity based on their face. To help solve this problem, face synthesis has

two distinct use cases. Firstly, Hassner et al. [19] create a framework that is based on face

frontalization, where they obtain a frontal view of a query person in order to simplify the

challenging problem of recognizing faces regardless of head orientation. On the other hand,

Peng et al. [44] take the opposite approach. They solve the problem of recognition under

any viewpoint by synthesizing pose variations of faces used for training. Again, both of these

methods prove useful for the task of face recognition, particularly because they are based on

a preexisting input face. What motivates us, though, is the ability to generate new faces.

As stated in the previous section, a significant step in solving the problem of unconstrained face
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generation has been the introduction of Generative Adversarial Networks. After their initial

proposal by Goodfellow et al. [17], several efforts have been made to improve the general

framework, whether through the use of different adversarial learning objectives [66, 4] or by

employing architectural changes to the networks of the generator and discriminator, including

the unanimous usage of CNNs.

To start with, Radford et al. [45] proposed some architectural changes for CNNs in order

to generate images with a resolution of 64x64, including the replacement of all pooling layers

with transposed convolutions, the use of batch normalization in both the generator and the

discriminator in order to facilitate training and the removal of the fully connected layers.

Although the results are far from the ones achievable later on, these changes paved the way

for the following work on image generation.

Karras et al. [27] proposed ProGAN (Progressive Growing GAN) for obtaining images at

high resolution and quality. They solve training instability by gradually increasing the depths

of the generator and discriminator, adding new layers that increase the resolution, in the end

producing high-resolution 1024x1024 face images. The model is later evaluated to a Fréchet

Inception Distance (FID) of 8.04, after the introduction of the FlickrFacesHQ dataset.

Further, Karras et al. [28] introduce a new generator architecture named StyleGAN that

builds upon their previous work on ProGAN in different ways, with the purpose of learning

a more disentangled and interpretable latent space. Disentanglement refers to the notion of

separability on the semantic level between different image features, such as high-level ones

(identity, pose) or lower-leveled ones (hair, illumination, background). One addition to the

ProGAN methodology is the use of a mapping network consisting of eight fully-connected

layers that transform a random latent vector into a style vector. Based on notions from the

literature on style transfer, they add the style vector to each block of the generator through

an operation called adaptive instance normalization (AdaIN). It consists of standardizing the

feature map xi of a certain block and then scaling and biasing the result with the style vector

y:

AdaIN(xi, y) = ys,i
xi − µ(xi))

σ(xi))
+ yb,i (4)

Another particularity of the StyleGAN architecture is the noise injection. Before each AdaIN

operation, random Gaussian noise is added to the feature map, resulting in an increased level

of variation of the generated samples.

With increased interest from the research community, the same researchers later introduced

StyleGAN2 [29], an updated version of StyleGAN with an increase in image quality. Instead

of injecting the style vectors in the architecture through the use of the AdaIN operation, they

are added through weight modulation and demodulation, with an impact on reducing artifacts

in the generated images. The injection of the style vector s is embedded directly into the

weights w of the convolutional layer in each style block, as seen in the following equation:
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w′
i,j,k =

si · wi,j,k√∑
i,k(si · wi,j,k)2 + ϵ

(5)

In addition, StyleGAN2 completely removes the progressive increase in resolution during train-

ing in favor of skip connections at all stages, both for the generator and the discriminator. With

these changes, StyleGAN2 manages to improve the FID score on the FlickrFacesHQ (FFHQ)

dataset introduced together with the StyleGAN paper from 4.40 to 2.84 at the 1024x1024

resolution.

A novel approach to face generation has been through the use of 3D-aware methods. Pre-

viously mentioned GAN methods have a limited understanding of the 3D nature of the face,

having poor results under large poses. To alleviate this issue, neural radiance fields (NeRF)

[37] have been incorporated into image synthesis methods. NeRFs provide a way of represent-

ing a scene with the help of fully-connected neural networks by obtaining the volume density

and radiance at a certain 3D spatial location, viewed from a certain direction. Although these

methods improve face generation consistency across different views, the process is compu-

tationally intensive, resulting in lower-resolution renderings. For instance, Chan et al. [7]

obtain an FID score of 14.7 on the CelebA dataset at 128x128 resolution, while Sun et al.

[57] reach an FID of 12.1 at the same resolution.

Another recent development in the context of face synthesis has been the introduction of

Denoising Diffusion Probabilistic Models [21]. Training with this framework takes a self-

supervised approach, by applying noise on top of an image and teaching the neural model to

revert the process, by removing noise step by step. After the network is trained, by starting

from a noisy image drawn from the Gaussian distribution, one can produce a new unconstrained

image simply by removing the noise step by step. Although they achieve state-of-the-art results

in terms of image quality when training on a diverse dataset [13], diffusion-based models are

not optimal in terms of the computational power required both for training (where each step

of denoising is taken at high resolution) and inference (because of the sequential procedure

for denoising). Although some work has been directed at reducing these issues by applying

the denoising steps in a lower-dimensional latent space [47], there is still a gap between these

models and GAN-based approaches, that synthesize a new image in a single forward pass and

yet achieve a higher FID on the face generation task.

We summarize the key aspects of the generative methods in Table 1, in order to guide the

decision for our choice of generator network.

3.3.2 Obtaining training labels

Previously discussed methods focus on generating the face itself. However, an important

aspect to consider when creating synthetic data for training is how to obtain the label corre-

sponding to the synthesized image. A target label represents the information required to train

12



Method Advantages Disadvantages

3D morphable model Full control over a series of

parameters (pose, illumination,

face shape)

Requires pre-existing face

images or 3D assets

GAN-based models State-of-the-art image quality

and efficient inference

Harder to control explicitly

3D-aware GANs More control in the 3D space Lower image quality than

standard GANs

Diffusion-based models High image quality Both training and inference are

slow

Table 1: Overview of face generation methods

a network in a supervised manner. We focus on obtaining face parts semantic segmentation

labels as per-pixel annotations are one of the most tedious annotations to manually perform,

and automatically labeled synthetic data would potentially save costs and effort. Therefore,

it is essential to obtain the segmentation map associated with each image with little manual

effort.

One of the ways of automatically obtaining annotations for synthetic data, and for faces in

particular, is through the use of 3D models. The FaceSynthetics dataset [61] in particular is

constructed by sequencing a series of operations on top of a parametric face model, similar

to the 3D morphable model mentioned earlier. These operations include randomly assigning

identities, expressions, texture, hair, clothes, and backgrounds. Semantic segmentation labels,

in this case, are perfect and result in high performance when training a segmentation network

on synthetic data alone, with an overall F1 score of 92.0 on the Helen dataset, compared

to 91.6 when training on real data alone. Although the results are impressive, this method

heavily relies on having a large collection of 3D assets.

Another way of acquiring labels for generated samples is in an implicit manner, by having a

conditional generative network that produces a result based on an input conditional signal.

Within the context of image classification, a controllable GAN that can produce an image

belonging to a certain class encoded in its input would help enhance the performance of the

initial image classifier on that particular underrepresented class. Therefore, because the GAN

is conditioned on an input class, training data is implicitly obtained for the opposite task of

assigning a class to an image.

Besides class labels or other similar conditional signals, one can create a conditional GAN

based on an input image. Through the use of this framework, Jiang et al. [22] propose

SGGAN - Segmentation Guided Generative Adversarial Networks. They control the generator

with the use of an input face image and a target face parts segmentation and train it to

produce the same face under a novel view that matches the target segmentation. Although

the framework achieves the goal of assigning semantic segmentation labels to ”warped” faces,

it relies on the performance of the segmentation network and it does not generate new faces.
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Zhang et al. [65] provide DatasetGAN, a method for generating a large amount of training

data based on the StyleGAN generator, with a small annotation effort. In their approach,

a few images produced by the generator are manually annotated with the required per-pixel

labels. From these images, they train a feature interpreter consisting of three fully-connected

layers to map the feature maps at each depth of the generator network to a class label for

each corresponding pixel. Because the feature maps have different spatial resolutions, they

upscale all features to the highest resolution and concatenate them before feeding them to

the style interpreter. Because this input has high dimensionality and does not fit memory

constraints, they only use a random subset of feature vectors from the concatenated feature

volume when training. They extensively test this framework on multiple tasks, including

semantic segmentation and keypoint localization, with significant performance improvements

over other methods used when only a few labeled examples are available, such as transfer

learning and semi-supervised learning, obtaining a mean intersection over union (mIoU) of

53.46, compared to 45.77 and 48.17 respectively on a test set of face images annotated with

34 semantic segmentation classes.

Building on DatasetGAN, Li et al. develop BigDatasetGAN [32], which scales the framework

for a much larger problem of obtaining semantic segmentation labels for a generator trained

to produce ImageNet samples. Instead of StyleGAN, they employ the use of a generator

network called BigGAN that was trained on ImageNet 1K [50] and label 5 samples per class

in order to train a convolutional style interpreter, instead of the fully-connected one used

previously. The segmentation branch added to the BigGAN network is altered. Starting from

the features with the lowest spatial resolution, a feature map is passed through a convolutional

layer, upsampled and concatenated to the following feature map in terms of spatial resolution,

before passing again through the same operations. After each concatenation, a mix-conv layer

is applied, which consists of two convolutional layers and a conditional batch normalization,

where the output takes the class into account. This approach maintains the performance

of the feedforward network employed in DatasetGAN, while having a much lower memory

footprint, therefore not requiring the use of the pixel sampling trick.

To sum up, the most important advantages and limitations of each method are mentioned in

Table 2.

Method Advantages Disadvantages

3D rendering Perfect labels due to the

nature of the rendering process

Requires 3D assets, including

faces

Image-to-image

translation

The associated segmentation

label is obtained implicitly

Based on pre-existing

segmentation maps

Feature interpreting

network

Labels are not perfect and

depend on the quality of the

generated sample

Easy to integrate into any

generator architecture

Table 2: Overview of methods for obtaining labeled data
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3.3.3 Controllable synthesis

Conditioning a generative network on a certain variable has been a popular research topic

ever since the introduction of GANs. Being able to control the generation process can be

extremely useful in the context of generating synthetic training data, as it allows implicitly

obtaining ground truth labels from the control signal itself. Moreover, it proves to be useful for

generating samples of underrepresented classes or ones with semantic features rarely present

in the original real data. Supplementing the training with synthetic data of this kind typically

leads to improved performance in such edge cases.

Conditional Generative Adversarial Networks [38] are a clear extension of the original GAN

architecture. The architectures of the generator and the discriminator are both modified to

support another input that represents the conditional information. Thus, a generator learns

to produce a sample that satisfies that particular condition, otherwise, it would be easy for

the discriminator to detect it as being fake. This method relies on being able to embed the

conditional signal into a vector and therefore semantic information about the generated images

cannot easily be controlled. In addition, adding control requires retraining the generator and

discriminator networks.

Other works rely on the disentangled representation of a GAN’s latent space and use it to

understand and perform the task of semantic editing.

InterFaceGAN [54] proposes a manner of enabling such editing in the latent space of GANs,

leading to control over face attributes such as age, gender, or expression. They conduct the

experiments on StyleGAN, showing a way of ”walking” along a certain latent direction that

resembles a semantic attribute. They treat every attribute as binary (with positive scores and

negative scores), and train a linear SVM (support vector machine) to find the best separation

hyperplane between the positive and negative samples. As a consequence of that, distancing

away from the hyperplane in each direction means more and more positive (or negative)

results. For instance, distancing from the age hyperplane relates to obtaining a photo of a

younger or older person. Although the results of the classification accuracy with regards to

the separation boundary are excellent (an accuracy of 98.7% on gender and 97.9% on age),

the downside of using this framework is not having the ability to explicitly control the value of

a discrete or continuous attribute (years of age, degrees of yaw as pose), instead only relying

on ”adding” or ”subtracting” that attribute.

A method that achieves this goal is presented by Shoshan et al. [55]. They propose a way of

explicitly controlling the values of semantic attributes such as identity, pose, or age, by training

a StyleGAN2 generator architecture to separately encode the controllable attributes in the

input style vector. The 512-dimensional vector is split into N+1 parts, where N is the number

of controllable attributes and one part is left for encoding the rest of the image features.

The generator is trained through contrastive learning on top of the usual adversarial training

objective, by penalizing samples in a batch that should have similar attributes but result in

different ones in the generated image. By doing this, the generator learns a disentangled
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representation of the attributes, that allows editing a semantic feature without affecting the

other ones. To gain explicit control over these attributes, a feed-forward network is trained

to map the human-interpretable values to the corresponding latent code. The precision of

the control obtained through the proposed method is undeniable, with the average distance

between the input variable and the attribute from the resulting image being on average 2.02

years in terms of age, or 2.29° in terms of the yaw angle. However, the requirement of

retraining the generator through this framework and not being able to utilize the entire input

latent space to represent image features results in a lower FID score, 5.72 compared to the

3.32 obtained through the usual training of StyleGAN2 at 512x512 resolution.

Finally, the strengths and limitations of the methods presented are discussed in Table 3.

Method Advantages Disadvantages

Conditional GANs High control precision Requires retraining the

generator

InterfaceGAN Does not require retraining the

generator

Is better suited for binary

attributes; continuous ones are

not explicitly-controlled

GAN-Control High control precision Requires retraining the

generator

Table 3: Overview of methods for controlling the generation

3.4 Chosen solutions

With all of the information presented earlier, we further elaborate on the choices made for

our system, offering a preview for the next chapter. To enable the generation of human faces

alongside associated semantic segmentation labels, we provide our reasoning for the selection

of each component or method involved, namely:

• the face generation network

• the automatic labeling procedure

• the method of controlling face attributes

3.4.1 Face generation network

Firstly, based on the previous analysis of the different available face generation methods listed

in section 3.3.1, we choose to use StyleGAN2 as our face generator, in large part due to

the quality of generated images in comparison with other methods. In addition, the choice is

guided by the number of research directions that stem from it, ranging from obtaining labels

to interpreting the generator’s latent space.
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There are multiple configurations of the StyleGAN generator, constructed to produce images

at a specific resolution. More specifically, the three available variants of the architecture have

an output resolution of 256x256, 512x512, and 1024x1024, respectively.

Before choosing the variant, we comparatively assess the quality and diversity of the generated

images through the FID score and the memory requirements in inference mode for each of

the three configurations. The results of our study are shown in Table 4. The FID score is

computed based on 50K synthetic samples produced by each variant and the entire original

FFHQ dataset, consisting of 70K images, downsampled to the respective resolution of each

variant.

Variant FID score GPU memory used

256x256 5.74 0.95 GB

512x512 2.95 1.28 GB

1024x1024 2.75 1.86 GB

Table 4: StyleGAN2 variants comparison

With these results in mind, we choose the 512x512 generator network for developing our

system. Compared to the 256x256 network, it obtains a much higher FID score of 2.95 vs.

5.74, without a large trade-off in memory used. Despite the lower resolution compared to

the 1024x1024 variant, implicitly resulting in a smaller-sized network, it manages to obtain

a respectable FID of 2.95 compared to 2.75, with a much lower memory footprint, which is

what allows us to simultaneously dedicate a part of our training resources to the tasks of

obtaining associated labels and controlling the generation. With the solution presented in

the next subsection, training the annotation branch especially proves to be resource-intensive,

as it requires loading multiple high-dimensional feature maps. Note that our study is not

impeded by the lower resolution, but generating at a higher resolution would most likely lead

to better performance on the segmentation around small-sized classes such as eyebrows, lips,

or earrings. Another reason for using the 512x512 variant is so that our results are comparable

to other related studies.

3.4.2 Automatic labeling procedure

Again, based on the observations in section 3.3.2, we make our choice of the method employed

to acquire face semantic segmentation labels.

Even though 3D modeling methods can obtain perfect annotations, they require a large set

of head scans and textures which are not publicly available in large part, making them not

suitable for our work. The other mentioned method of implicitly obtaining segmentation

labels by having the semantic map as one of the generator’s inputs is promising and could

yield high-quality annotations, yet it is not flexible, requiring retraining of the generator in

case the labeling scheme is changed. Moreover, it relies on pre-existing segmentation masks,

which limits the ability to synthesize completely new data points.
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Therefore, in order to obtain semantic segmentation labels, we adopt the solutions described in

DatasetGAN and BigDatasetGAN. They lead to acquiring high-quality annotations of entirely

new faces, with only a small set of manually labeled images. This approach proves to be

flexible, as it only requires the re-annotation of the small subset of sample images if the labeling

requirements change. We further build our solution based on both papers, by maintaining the

advantages of each one, while researching ways to improve the architecture of the additional

segmentation branch used.

3.4.3 Control of face attributes

We are motivated by generating faces with explicitly-controllable attributes, which indicates

the use of the method described in GAN-Control. However, we avoid the requirement of

retraining the generator network from scratch with the latent space separation described in

the paper. This supports our effort of creating a flexible framework that can be employed for

any pre-trained StyleGAN-based generator.

Therefore, by relying on the disentangled nature of the latent space of the generator, we

implement a modified version of the approach described in the paper: instead of training the

generator with the custom-designed latent space vector, that has separate representations for

each controllable attribute, we directly map all of the conditional variables into the latent

space, and find which parts of the representation contribute the most towards the age and

gender of the generated person. This way, we are able to precisely control attributes of the

generated face, while still maintaining a high level of diversity. In fact, the method proposed

allows for a trade-off between diversity and control precision.

The alternative provided by InterfaceGAN is promising as well, as it does not require retraining

the generator. However, the framework is more aligned with the task of semantic editing of

an image rather than controllable generation. The difference is that editing involves manual

interaction, as attributes are not explicitly controlled, and therefore it is not a great choice

for a system that generates large sets of synthetic data.
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4 PROPOSED SOLUTION

In this section, we describe the main functionality of our face generation framework. After

presenting an overview of the developed architecture, we separately introduce each component

and mention its contribution towards our goal of producing synthetic data of faces alongside

their semantic segmentation labels. Within each subsection corresponding to a module, apart

from highlighting the architecture and functionality, we briefly touch on the processes involved

in obtaining an effective component. In the end, we discuss the flexibility of the architecture,

by mentioning how it can be adapted to produce other labels, and by indicating how the

framework allows controlling only one of the two attributes, or none at all.

4.1 Architecture

The proposed framework consists of several neural-based solutions that each tackle a specific

part of the generation process.

To reiterate the context, our goal is to utilize a generator network capable of producing human

faces, and extend it with a way of obtaining the semantic segmentation labels associated with

the generated images. At the same time, a manner of controlling image attributes should be

provided.

To achieve these goals, we propose the framework illustrated in Figure 3, where all of the

main components are illustrated from a high-level perspective. The generation process starts

with a control attribute encoder, which maps explicit values of age and gender into a style

vector w from the latent space of the generator. Thus, the requested age end gender dictate

the attributes of the person obtained in the end. Style vectors w obtained this way serve

as input to the face generator network by injecting them at every style block, through style

modulation. The face generator network is the main component of the system, as it is capable

of producing high-quality images of faces. Finally, the feature maps involved in the generation

are processed by the separate segmentation network, which assigns semantic segmentation

labels of human face parts to the generated image.

With the outline of our framework in mind, we detail each of the components in an order

consistent with their place in the final processing pipeline.
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Figure 3: Overview of the proposed architecture

4.1.1 Control attribute encoder

To begin with, an attribute encoder is utilized in order to transform the explicit values of

control attributes into a vector in the latent space of the generator. With proper training of

this component, the predicted latent code leads to the generation of a person that satisfies

the conditional constraints.

Figure 4 illustrates the detailed architecture of the control attribute encoder. The main part

used for achieving control over age and gender is a feed-forward network with four layers,

referred to as the attribute mapping network. Both the number of layers and the size of

each layer are consistent with the mapping networks recommended by Shoshan et al. [55]

in their GAN-Control framework. However, instead of training a separate attribute mapping

network for each of the attributes, we train a single one that directly maps pairs of age and

gender values into the style vector. The reason behind this change is that generator is not

trained according to the procedure described by the authors and therefore does not have a

clear separation between attributes in the 512-dimensional style vector. Because the attribute

mapping network by itself produces deterministic results given a certain age and gender, we

introduce randomness and variation to the generated images by combining the mapped style

vector wattr with another style vector randomly wrandom generated by the original mapping

network of StyleGAN2, producing style vectors wcombined. We inherit age and gender from

the first one and the other image attributes from the random latent vector. We will call this

procedure style mixing in the later chapters, where we detail how exactly the two vectors are

combined in order to maintain both control precision and diversity.
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Figure 4: Detailed view of the control attribute encoder

4.1.2 Face generation network

Next, style vectors wcombined are inserted in the StyleGAN2 generator at corresponding layers.

As stated in the previous chapter, we settle on a generator that produces samples at a

resolution of 512x512, with an overview of the architecture depicted in Figure 5.

Originally, a random latent variable z is mapped into a random style vector w through eight

fully-connected layers. However, this component of the StyleGAN2 architecture is moved to

the control attribute encoder, where it helps create the random style vector that dictates the

other attributes of the image. Therefore, the image generation process starts with the style

vectors wcombined obtained from the control attribute encoder, which are injected into each

style block, finally producing a 512x512 face image.

An in-depth look at the design of three consecutive style blocks is present in Figure 6, where

one can notice how the style vector A is injected through the use of the modulation and

demodulation of convolutional weights, a process described earlier in section 3.3.1. After the

convolutional layer, a learnable bias is added along with random noise B, which helps increase

the variation of the generated images.

4.1.3 Segmentation network

The final component that we describe is the segmentation network. It consists of a separate

branch added as an extension to the architecture of the generator, as it relies on all of its

intermediate feature maps to produce the semantic segmentation map associated with the

generated image. We have implemented and tested multiple configurations, which will be
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Figure 5: StyleGAN2 generator architecture Figure 6: Style blocks [29]

further explained in the next chapter, alongside their detailed implementation and in-depth

architecture.

As previously mentioned, the branch exploits the eight intermediate feature maps of the

generator. Regardless of the exact implementation, in order to handle the different spatial

shapes of the feature maps, the architecture has to provide a way of upsampling feature maps

and a way of aggregating them. We experimented with different ways of upsampling (using

bilinear upsampling and a normal convolutional layer, or a transposed convolution instead)

and different ways of aggregating the feature maps (concatenation and addition). In the

end, the resulting features have a spatial resolution of 512x512, the size of the output of the

generator, and pass through a final few layers, namely a batch normalization layer and a final

convolutional layer, obtaining the corresponding face segmentation of the generated image.

Although training is done only on a small set of previously synthesized images that are manu-

ally annotated, the pre-trained generator transfers the knowledge already present in its main

generation branch to the new task of semantic segmentation. The effectiveness of this ap-

proach and the ability of the segmentation branch to generalize to other input latent vectors

is assured by the continuous nature of the generator’s latent space.
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4.2 Framework flexibility

In this section, we discussed the architecture of our system and how it fits the problem of

generating faces with semantic segmentation labels with control over the age and gender

attributes. However, the framework can easily be adapted for solving other similar problems.

Firstly, we chose to integrate semantic segmentation labels into our solution as they represent

an example of pixel-wise annotation and one of the most laborious annotations to obtain

manually, therefore potentially saving lots of annotation effort and costs. However, the archi-

tecture of the label-assigning network can easily be modified to support other labeling tasks

by simply replacing the final convolutional layer with other layers suitable for the task.

Secondly, in terms of control attributes, one can easily follow the procedure described and

apply it to control other variables, such as pose, expression, or illumination.

Additionally, our framework still allows generating images unconditionally, by setting the com-

bined latent equal to the random style vector, discarding the style vector produced by the

attribute mapping network. One can also generate an image based only on a subset of the

supported control attributes by assigning the other ones randomly as input to the attribute

encoder.
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5 IMPLEMENTATION DETAILS

The purpose of this chapter is to offer details with regard to the development of the solution.

The order of the following sections relates to the steps taken during the development phase

of the framework. Firstly, we mention the technologies adopted and the starting premises.

Secondly, for each of the added components, namely the segmentation network and the

control attribute encoder, we again stress their importance while putting emphasis on their

implementation and describing the training procedure used in the case of neural modules.

5.1 Technologies and premises

The programming language of choice is Python, due to its simplicity and the availability of

deep learning frameworks and libraries.

To take advantage of its preexisting implementations of neural networks and its powerful

auto-differentiation engine, we develop our work using the PyTorch framework 1, as is cus-

tomary for many computer vision applications. Because we experiment with different network

configurations, we use Tensorboard 2 to track ongoing experiments and compare finished ones

in order to guide the next developing steps.

Because our work relies on image processing and manipulation, we use the Open Computer

Vision Library (OpenCV) and its implementation in Python through the cv2 package 3. For

manipulating multidimensional arrays we use Numpy 4.

We build our framework on top of the StyleGAN2 [29] generator model. More specifically,

we refer to a released checkpoint 5 of the generator, previously trained on the FFHQ dataset.

The working resolution of the generator is 512x512, which translates to producing images with

good quality while keeping a medium resource consumption. The reasons behind this choice

are presented in more detail in a previous chapter on related work. In essence, StyleGAN2

provides better image quality when compared to its predecessors, while at the same time

maintaining a disentangled latent space, which justifies the performance of semantic editing

tasks.

1https://pytorch.org/. Last accessed: 13 June 2023
2https://www.tensorflow.org/tensorboard. Last accessed: 13 June 2023
3https://github.com/opencv/opencv-python. Last accessed: 13 June 2023
4https://numpy.org/. Last accessed: 13 June 2023
5https://catalog.ngc.nvidia.com/orgs/nvidia/teams/research/models/stylegan2/files.

Last accessed: 13 June 2023.
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5.2 Face parts semantic segmentation

The current section displays the implementation details for the semantic segmentation net-

work. As mentioned in earlier chapters, the task of face parts segmentation or face parsing

refers to the precise labeling of each pixel to form a single-channel image called the segmen-

tation map, with values corresponding to the class that particular pixel belongs to.

Generally, the solution for the face segmentation problem follows the framework of Dataset-

GAN. The steps include generating a small set of images, annotating them manually, and

training an additional network connected to the generator to reproduce the manual anno-

tations. In particular, however, in an attempt to decrease memory usage, which prompted

the procedure described in the paper of training only on a subset of pixels, we replace the

ensemble of multilayer perceptrons with a single convolutional network.

5.2.1 Labeling convention

It is essential to first define a particular convention in the form of possible classes and annota-

tion style. Without loss of generality, we define similar labels to the ones proposed by Lee et al.

[31], where they introduced the CelebAMask-HQ dataset for the task of face parsing. With

this in mind, the proposed segmentation network predicts a total of 18 classes corresponding

to the following components of the resulting face image: background, cloth, earring, eyeglass,

hair, hat, left eye, left ear, left eyebrow, lower lip, mouth, neck, nose, right ear, right eye,

right eyebrow, skin, upper lip. Note that the only category missing when comparing to the

labeling of CelebAMask-HQ is ”necklace”, due to its rarity among the generated faces.

In addition, the face segmentation results displayed in the next sections follow a color scheme

suitable for distinguishing between all classes.

5.2.2 Manual annotation

Having defined the required classes, a set of 50 images is obtained with the help of the

generator. In addition, keeping track of the input latent vectors that produced each image is

key in this approach, as they are further employed during training. To make sure the resulting

images are reproducible, the random noise component of each style block is set to zero (noise

is not injected) in the generator forward pass. Therefore, we save the input latents as binary

.npy files alongside the image they produced.

The next important step is the manual annotation of the set of 50 generated images. For

completing this task, we employ the use of a platform called Dataloop 6 which is specifically

designed for large annotation tasks. It supports popular label types such as image classes,

6https://console.dataloop.ai/welcome. Last accessed: 13 June 2023
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bounding boxes, segmentation, or keypoint marking. As an alternative, one can use COCO

Annotator 7. However, we found that using the annotation style based on connected points, as

is the case for the COCO Annotator, results in a coarse and imprecise segmentation. Therefore,

we choose the fine-grained style obtained with the help of the Dataloop annotating platform.

Multiple examples of the manual annotation for synthetic images are displayed in Figure 7.

Figure 7: Generated images and their manual annotation. The left column shows the image

originally generated by StyleGAN2. The middle column displays the annotated segmentation

mask for the corresponding image. The last column is the result of blending the original

synthetic image and its segmentation, for visualization purposes.

5.2.3 Segmentation network architecture

We experiment with multiple configurations of the segmentation network and in the end

choose the approach that maximizes the mean F1 score on the validation set. Details and

results of the testing procedure are shown in the following chapter, which is dedicated to

evaluating the solution. For future reference, the list of architecture configurations employed

are:

1. config-1 - an architecture similar to the generator, sequentially upscaling feature maps

from the lowest spatial resolution (4x4) to the highest (512x512)

7https://github.com/jsbroks/coco-annotator. Last accessed: 13 June 2023
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2. config-2 - an architecture where feature maps are processed independently, merged,

and finally interpreted together

(a) config-2a - feature maps are processed independently by one convolutional layer

(b) config-2b - feature maps are processed independently by two convolutional layer

(c) config-2c - feature maps are processed independently by three convolutional layer

(d) config-2b-balanced - same as config-2b, except a class-balancing loss is employed

All of the architectures are based on the general architecture illustrated in the previous chapter,

Figure 3, with the main purpose of the network being to transform the feature maps from

all layers of the generator into a final segmentation map. Instead of the resource-intensive

solution of upsampling all feature maps to the final 512x512 resolution, concatenating them,

and using an ensemble of multilayer perceptrons (MLP) to predict per-pixel classification,

as stipulated in the original DatasetGAN approach, we rely on the insights provided by the

following work, BigDatasetGAN, where the feature interpreter takes the form of a CNN.

Therefore, our segmentation network is also a convolutional neural network, with a different

architecture.

In between convolutional layers, use the ReLU activation function for nonlinearity. Moreover,

we found that using a batch normalization layer right before the final convolutional layer

marginally improved the results, but more importantly had an effect on reducing the training

time taken until convergence.

We will further detail the two main configurations (config-1 and config-2) of the segmen-

tation branch and show the iterative process through which the best results were achieved.

The first approach (config-1) displayed in Figure 8 is based on replicating the architecture

of the generator. With this in mind, the segmentation branch is created to match the shapes

of the generator feature maps at each respective layer. To leverage the knowledge of the

generator network, the feature maps are introduced at each layer through addition. The

alternative of using concatenation requires a further reduction in the channel dimension in

order to fit the memory constraints, which negatively affects the performance. For upscaling

purposes, to further match the architecture of the generator, we use transposed convolutions.

The second configuration (config-2) is presented in Figure 9 and consists of passing each of

the eight feature maps of the generator through a set of convolutional layers. The resulting

feature maps are then upsampled to the output resolution of 512x512 using bilinear interpo-

lation and concatenated along the channel dimension. The resulting tensor is processed by

a batch normalization layer and a final convolutional layer that maps the channels into the

number of classes, 18. Aside from being helpful in solving the task of semantic segmentation,

the convolutional layers also reduce the number of channels before the upsampling operation.

The channel dimensionality reduction is required before the upsampling operation for memory

efficiency. The performance is not severely affected in this case by the channel reduction

when compared to the first configuration, as a feature map with low spatial dimensions still

provides useful information for the final computation. In the previous configuration, a feature
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Figure 8: Segmentation network configuration 1

map with low spatial size passes through more convolutional layers than one with high spatial

dimensions, and therefore its contribution to the result diminishes if each of the convolutions

involves a channel reduction.

The variations of config-2 are named based on the number of convolutional layers that process

each of the feature maps: config-2a with one layer per feature map, config-2b with two,

and config-2c with three. Config-2b-balanced further builds on config-2b not by modifying

the architecture, but by employing a class-balanced loss in training.

5.2.4 Training

For training and evaluating purposes, the dataset of 50 data points is divided as follows:

30 for training, 10 images for validation, and 10 images for testing the performance of the

segmentation. We will continue by detailing the training process, saving the discussion for

the performance on the testing set for the next chapter.

Despite the small size of the training dataset, the segmentation branch is still capable of

reaching generalization in the task of semantic segmentation, as the training procedure detailed

further is an extension of a learning technique called transfer learning. Transfer learning

generally represents a way of exploiting a model previously trained to solve a particular task,

in order to adapt and reuse its knowledge to another similar problem, which may consist

of training on a smaller dataset. While this typically means reusing the same network and

possibly changing the last few layers, in our case, this concept is applied when training an

entirely new network or branch. We leverage the concepts embedded in the feature maps of

the generator to train the segmentation branch with very few training samples. This approach

proves to be both compelling in terms of performance and training time.

We pre-compute the feature maps for each image in the dataset by running the forward pass of

the generator with the previously saved latent vectors. Saving the features and loading them

at training time implies that we no longer need to load the generator model when training,
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Figure 9: Segmentation network configuration 2

thereby saving both computational effort and GPU memory. The alternative represents loading

only the latent vectors at training time and extracting the feature maps on-the-fly, before using

them as input to the segmentation branch. Note that in this second approach, for a successful

training, the weights of the generator have to be frozen.

An example of the configuration file used for training the segmentation branch is displayed in

Listing 1, Appendix A. We used a batch size of 2 and trained for 100 epochs using the Adam

optimizer with a learning rate of 0.001 and a weight decay of 0.0001.

The training minimizes the cross-entropy loss between the logits of the segmentation branch

output of shape 18x512x512 and the ground truth segmentation map of shape 1x512x512.

In the output of the network, each pixel has a probability of belonging to each of the 18

classes, hence the 18 channels. The ground truth map has a single value per pixel - the class

it actually belongs to.

The PyTorch implementation of cross-entropy loss first applies a softmax operation over the

output logits and then computes the negative log-likelihood, both operations being summa-

rized in the following expression:
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Lce = − 1

B
∗
∑
(y,t)

log(
eyt∑
i e

yi
), (6)

with B being the batch size, y being the network output for a certain pixel, and t being that

pixel’s class.

At inference time, for validation and testing purposes, obtaining the predicted segmentation

map pred reduces to finding the class with the highest score (corresponding to the highest

probability), for each pixel in the network output logits:

predi,j = argmax
k

(logitsk,i,j). (7)

For config-2b-balanced, we also try a technique described by Cui et al. [10] for handling

class-imbalanced datasets. The cross-entropy loss for each class is weighted differently, based

on the frequency of a certain class among the training set and a hyperparameter β that

controls the degree to which underrepresented classes are weighted more than common ones.

The final loss, therefore, has the equation:

L =
∑
c∈C

1− β

1− βnc
∗ Lc, (8)

where C is the set of classes, nc is the number of pixels that correspond to class c in the

training set, and Lc is the cross-entropy loss computed only on pixels of class c in the ground-

truth segmentation map. We use a value of 0.9999 for β.

5.3 Control attribute encoder

In this section, we detail our approach to gaining control over the generation process.

Inspired by the GAN-Control framework, we train a small feed-forward network in order to

encode attributes into the latent space of the generator. The mapped style vector projects

into a face image with the features required. In our case, the control variables employed are

age and gender.

As opposed to GAN-Control, we do not require a specially-designed generator, one that has

its latent space split into segments that independently control each attribute. Instead, we

start from the original StyleGAN2 generator and show that its latent space is sufficiently

disentangled for the purposes of gaining control over a few attributes. This decision implies

directly encoding all of the controlled attributes into a style vector with a single feed-forward

network, instead of the approach of using one per attribute.
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5.3.1 Dataset used

To obtain training data for the mapping network, we employ the use of the same age predictor

as the one used in GAN-Control, namely DEX [48], a VGG-16 network [56]. For the gender

attribute, since it was not one of the attributes controlled in the GAN-Control framework, we

use another VGG-16 network trained for this task, which was released together with the age

predictor in the same paper. The architecture of the VGG-16 network is detailed in Table 11

in the Appendix, where one can see a sequencing of 13 convolutional layers followed by a final

three fully-connected layers. The final output has a size equal to the number of classes being

predicted. In the case of the age predictor, that number is 101, and in the case of the gender

predictor, it is 2.

With this in mind, we run the generator in inference mode, constructing a dataset of 100.000

samples with pairs of style vectors w and their respective generated images. We run the VGG-

16 networks on every image, obtaining a label for the age and gender of the synthetic face.

Naturally, we do not need to save the images thereby reducing the time taken to construct

the dataset. Given the final output of the VGG-16 networks, gender directly corresponds to

the highest among the two output values. Age is obtained through what is called the softmax

expected value, which reframes the usual problem of regressing the age into a classification

problem, yielding better results. Given the 101 output values of the VGG-16 age predictor

network, the equation of the softmax expected value is:

E =
100∑
i=0

k ∗ eyk∑
i e

yi
, (9)

where y is the 101-dimensional output of the network which is first normalized through a

softmax operation before computing the expected age value.

This dataset is constructed because the problem of controlling the attributes of the generated

face reduces to reversing the previous process: we train a simple fully-connected network to

map the age and gender back into the latent space of the generator, based on the saved

associated style vector.

5.3.2 Mapping network architecture

We use a multilayer perceptron consisting of four layers in order to obtain a mapping from the

given attributes to a style vector that generates an appropriate face. The architecture for this

encoder is consistent with the one suggested in GAN-Control in terms of the hidden layers.

What differs is that the input layer consists of two units, as we encode both the age and

gender attributes at the same time. An overview of the layers that constitute the attributes

mapper is listed below in Table 5. In addition, note the output size of 512 which matches

the size of a style vector.
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Layer type Input

shape

Output

shape

Linear 2 512

Linear 512 512

Linear 512 512

Linear 512 512

Table 5: Attribute mapping network architecture

As suggested in the paper, we use the Leaky ReLU activation function with a negative slope

of 0.2 as the choice of nonlinearity between each linear layer. The Leaky ReLU activation

function has the following formula:

LeakyReLU(x) = max(0, x) + a ·min(0, x), (10)

where a is the negative slope.

5.3.3 Training procedure

Given the dataset of 100.000 pairs of style vectors with the associated age and gender, we

train the mapping network to solve the inverse problem: given the age and gender, find an

encoding into a suitable style vector.

Firstly, the dataset is split into a training and a validation part. The validation subset has

a total of 1000 examples, enough to measure how well the model is performing at a certain

point in training.

We use the configuration file found in Listing 2, Appendix A. As the training process is slow

and an epoch is quite large, we train based on iterations instead of epochs, using the same

optimizer hyperparameters as the ones employed for training the segmentation network. We

evaluate the network on the validation set every 2000 iterations and monitor the performance,

stopping the training when convergence has been reached.

Initially, we followed the approach described in GAN-Control, where each attribute encoder is

trained using a combination of a regression loss Lreg and an attribute loss Lattr. The regression

loss is either an L1 or an L2 distance between the target style vector and the predicted one.

We choose the mean squared error (MSE) loss for our work. As for the attribute loss, the

actual function used depends on the attribute at hand. The loss is based on the notion of

reconstruction, as it is computed between the input attributes and the projected ones. The

projected attributes are obtained by first mapping the input attributes to a predicted style

vector (with the help of the mapping network), then an image is produced by the trained

generator, and finally, the attribute predictors are used on the image.

To this end, the loss that we minimize is composed of three terms and is described in the
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following equation:

L = 10 ∗ Lreg + 0.01 ∗ Lage + Lgender, (11)

where Lreg is the MSE between the target style vector and the one predicted by the network,

Lage is the MSE loss between the input age and the reconstructed age, and Lgender is the

cross-entropy loss employed on the input gender and the reconstructed gender. The weighting

factors are manually chosen so that the loss values lie in a similar range at the start of the

training.

Note that this training requires loading the mapping network, the generator network, and

the two VGG-16 networks into memory at the same time. Because of that, we simulate a

larger batch size of 64 using gradient accumulation, despite the real batch size being only 2.

Gradient accumulation refers to the idea of computing gradients based on small batches and

aggregating them for multiple steps, before finally updating the weights. This technique is

done to increase training stability.

In a further effort to simplify the training process and understand the effect and significance

of the loss components, we conduct a study by training using only the regression loss. We

show that this method approaches a similar control precision and leads to exponentially faster

training, as the loss only requires the output of the mapping network. In addition, by not

steering the optimization in the direction of the predicted age and gender on the projected

image, we obtain a mapping network that is less biased to the attribute predictors.

5.3.4 Style mixing

By only using the attribute mapping network and passing the predicted values to the generator,

we obtain high-quality images, depending on the requested age and gender, but at the cost

of diversity. This unwanted consequence is bypassed by the GAN-Control framework through

the fact that in training their specialized version of the generator, a part of the latent code is

left aside for encoding all other image attributes besides the controlled ones.

While this approach proves to be useful in their case, we want to have a method of turning a

pre-trained generator model into a powerful synthetic data generator.

How we achieve this is by leveraging the high disentanglement of StyleGAN’s latent space. We

combine two style vectors: one predicted by the attribute mapper and one randomly generated

by the original StyleGAN2 latent mapper. The resulting style vector is then injected at each

layer of the generator. This method relies on a result published by the authors of StyleGAN,

whereby they show how injecting a style vector at a certain layer controls a specific semantic

part of the generated image.

Therefore, we find the layers that have the biggest influence on the age and gender of the

generated person. To accomplish this, we first establish a baseline for the mean age error
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and gender accuracy of the model when using random style vectors as input to the generator.

Naturally, as this does not include any sort of control component, it results in a 15.77 mean age

error and 49.5% gender accuracy, as listed in Table 6. After the baseline has been established,

we analyze how much the control precision increases when injecting the attribute-controlled

style vector at each possible position, while preserving the random style vector as input to

every other layer. The results of this analysis are presented in Table 6. There are eight total

layers, of which layers 2, 3 and 4 have the highest contribution toward the goal of controlling

age and gender, as they improve the precision of the control the most.

Layer Age error (years) Gender accuracy (%)

baseline 15.66 51.20

1 16.12 52.40

2 13.80 55.30

3 13.32 65.80

4 10.80 73.50

5 14.59 51.30

6 15.50 51.10

7 15.63 51.40

8 15.64 51.40

Table 6: Effect of injecting the random style vector at each layer

Given these results, we conclude that in order to obtain as much diversity as possible, under

the constraint of maintaining a high control precision, we have to inject the predicted style

latent at layers 2, 3, and 4, as the other layers have little to no effect on the age and gender of

the generated image. The random style vector is therefore used as input to the other layers.

5.4 System overview

In this chapter, we detailed the implementation of each component. After establishing how

the modules are constructed alongside their capabilities, we briefly present how the overall

system was assembled.

To begin with, the proposed framework is intended as a solution for synthesizing large datasets

with reliable annotations. The final goal is to have synthetic training data as a supplement

to real data, by improving the distribution of the real data in underrepresented cases, through

control of the generation, or by completely replacing real data in cases where it is hard to

obtain or annotate.

Therefore, we design our system in order to have flexibility. One can synthesize data based on

all of the control attributes, as mentioned previously. In addition, there exists the possibility

of generating based on a subset of control attributes, by randomly assigning the others at

inference time. Lastly, the control component can be fully removed by only using the random

style vector as input to the generator.
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6 EVALUATION AND TESTING

The aim of this chapter is to present the results obtained through the previously detailed

methods. We evaluate our framework both quantitatively, through metrics, and qualitatively,

by visually inspecting the images and semantic segmentation maps produced by the system.

6.1 Semantic segmentation evaluation

Firstly, to evaluate the training process, we analyze the loss curves during the training of the

label-assigning network (segmentation network). The training itself converges fast, with an

example of the evolution of the training loss and validation loss being shown in Figure 10.

The training slightly suffers from overfitting, as seen from the increase of the validation curve

in later epochs, suggesting that a larger number of training samples would help. However,

for the purposes of this paper, we find that the number of annotated examples is sufficient

for drawing conclusions and for serving as a baseline for the employed method. In practice,

if integrating such a system for improving the performance of an existing network through

synthetic data, one would need to think about balancing the effort in the number of annotated

images against the performance required.

In order to choose the best configuration of the segmentation network, we compare their

results on the set of 10 validation samples. We use two metrics that are relevant to the task

of semantic segmentation: F1 score and IoU (intersection over union) [68, 69].

The F1 score is obtained by combining precision and recall into a single metric. Specifically,

it is computed as the harmonic mean of the two. In this case, the F1 score is computed

on the entire image, by comparing the predicted segmentation map with the ground-truth

annotated one. Given the notations of TP, FP, FN, and TN for the number of true positive,

(a) Training loss (b) Validation loss

Figure 10: Typical segmentation network loss curves with respect to the number of training

steps
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false positive, false negative, and true negative pixels, precision, recall, and F1 are computed

using the equations:

Precision =
TP

TP + FP
(12)

Recall =
TP

TP + FN
(13)

F1 =
2 ∗ Precision ∗Recall

Precision+Recall
(14)

IoU is defined similarly, using the following equation:

IoU =
TP

TP + FP + FN
(15)

With this in mind, we present the results of the previously listed configurations on the validation

set in Table 7. Note that we exclude the background class from the computations, as

is customary for this task [68, 69]. All configurations score similarly, suggesting that the

method of transferring the generator’s knowledge to the problem of predicting segmentation

labels is well formulated. The worst-performing configuration is the first one, indicating that

an architecture similar to the generator does not yield the best results. This is because the

problem does not require learning to ”generate” the label; instead, a better solution is to

directly adapt the problem of face generation to face segmentation.

Configuration Mean F1 score (%) Mean IoU (%)

config-1 90.59 78.79

config-2a 91.04 79.42

config-2b 91.51 80.13

config-2c 91.09 79.63

config-2b-balanced 91.96 80.73

Table 7: Validation results for the segmentation network

After choosing the best performing model (config-b2-balanced), we compute the F1 metric

per class and the mean F1 on the test set, in order to gain an insight into what classes have

the best and the worst results. These insights are summarized in Table 8. As expected,

classes that generally relate to a lot of image pixels (background, skin) have a better F1 than

classes with few image pixels (earring, eyebrow, lip). However, the performance on the test

set is in line with the one in the validation set.

We also judge the performance of the predicted semantic segmentation maps in comparison to

other face parts segmentation networks, previously trained on CelebAMask-HQ, and therefore

producing a set of labels similar to ours. We conduct the tests on our test set and also list
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the results in Table 8. Note that the performance of our segmentation is similar or better

in most cases, suggesting that training data produced by our framework may indeed have a

positive effect when training for the downstream task of face parts semantic segmentation.

background
eyeglass
cloth

mouth
lower lip
upper lip

l ear
r ear
earring

hat
hair
nose

l eyebrow
r eyebrow

skin

l eye
r eye
neck

mean

BiSegNet [64]
98.41
93.22
89.77

93.48
91.38
88.90

64.99
66.83
25.20

95.84
95.88
92.33

54.37
48.69
97.01

42.20
40.54
94.78

73.84

DML-CSR [68]
97.96
94.39
89.38

94.45
91.06
88.72

91.77
94.86
79.14

95.98
94.14
93.45

84.50
85.06
96.92

90.38
89.58
95.06

91.10

Proposed system
97.73
97.02
80.22

94.73
90.26
91.26

93.08
95.33
78.93

90.70
94.91
95.23

86.13
86.30
96.61

92.85
91.52
94.80

92.01

Table 8: Comparison of mean and per-class F1 score (%) on the test set

Note that there may exist annotation differences between our manual annotation and the

annotation of CelebAMask-HQ (for instance, hair segmentation granularity, or boundaries of

the nose), therefore rendering the comparison not exact, but still representative. To comment

more on the results, we observe that BiSegNet produces a high-quality segmentation, but its

failure cases include mismatching the left and right facial parts, which considerably reduces

the F1 score on those classes. DML-CSR produces a result very similar to ours, with slightly

better results on the hat and cloth classes, suggesting that we may benefit from having more

training data with those particular classes.

We display the predicted segmentation maps and visually compare them to the corresponding

manual annotation. A subset of the results can be seen in Figure 11. The model generally

performs well, with the most typical errors consisting of a more coarse segmentation of the

hair or less precision around smaller parts of the face (eyebrows, eyes).

Results of generating completely new images alongside the semantic segmentation predicted

by the trained segmentation network are displayed in Figure 12. For more samples, refer to

Figure 17 in Appendix C.

6.2 Evaluation of attribute-guided generation

Figure 13 shows the evolution of the validation loss and metrics when considering all three

losses. As one can observe, the gender accuracy and age mean error improve over time and

reach almost perfect values. However, the reconstruction loss improves until a certain point,

where it remains for the rest of the training. This can be explained as follows: as we are using

an encoder, the natural consequence is that for a certain age and gender, in order to minimize

the reconstruction error, a mean latent is obtained.
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Figure 11: Segmentation test results visualized. For each set, the left column represents

the originally generated image. In the middle column, the predicted semantic segmentation

can be observed and compared to the last column, which contains the ground truth manual

annotations.

Figure 12: New generated faces with the associated semantic segmentation annotation after

training

The exact values for the age error and gender accuracy on the validation set are listed in

Table 9 for the model that uses all three losses. Considering the very high accuracy obtained

with this method (0.85 mean age error in years, and 100% gender accuracy), it is safe to say

that the model learns a mapping biased to the attribute-predicting models. That is, given

a certain user input of age and gender, the mapping network produces a style vector whose

associated image is perfectly aligned with the VGG-16 networks used.

Total loss Age L1 error Gender accuracy (%)

Lreg + Lage + Lgender 0.85 100%

Lrec 1.78 100%

Table 9: Comparison of validation results based on loss employed

In addition, we train the network using only the MSE loss on latent vectors, (Lreg). With the

results of 1.78 mean age error and 100% gender accuracy, this training appears to perform

slightly worse than the method that uses all losses. However, the result is strictly based
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(a) Latent MSE (b) Age mean error (c) Gender accuracy

Figure 13: Attribute mapping network validation results

on learning to map a requested age and gender into a mean style vector for the requested

attributes.

The control precision is as impressive as mentioned previously only because the attribute

mapping network converts the queried attributes into a generic face with those attributes, as

seen from Figure 14, one can observe samples produced by the generator network given a

random age and gender. The collapse in variety is further attested to by the results illustrated

in Figure 15, where one can observe that fixing the gender attribute and modifying the age

attribute results in an interpolation across the ”age dimension”, where other image attributes

barely change.

Figure 14: Faces synthesized based on attribute mapping network, without style mixing

Figure 15: Results of fixing the gender attribute and increasing the age attribute

With the added diversity from the style mixing operation previously discussed in section 5.3.4,

Table 10 summarizes the final accuracy of the control, while at the same time comparing the

solution to the other ones listed in the previous chapter on related work. We estimate the

mean age error in years and the gender accuracy based on a set of control attributes extracted

from 10000 images of FFHQ, as indicated in GAN-Control.
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When compared to the InterfaceGAN framework, we score a lower gender accuracy of 95.53%

vs. 98.7%. However, the results are not directly comparable, as they compute the metric

using a set of images with high confidence in the predicted gender attribute. In contrast,

our result is bounded by the performance of the gender-predicting model. In comparison with

GAN-Control, we do not reach the same level of control in age, with a mean error of 4.47

years compared to 2.02, but we maintain the high-quality results of the original StyleGAN2

generator, as we do not retrain it specifically for enabling high-precision control.

Method Age L1 error Gender accuracy (%)

InterfaceGAN [54] N/A 98.7

GAN-Control [55] 2.02 N/A

Proposed system 4.47 95.53

Table 10: Comparison of control accuracy and FID

Visual results that intuitively explain the functionality of style mixing are displayed in Figure

16. The final image is a composition of the two others, by extracting the age and gender

from the first one and all of the other image attributes from the other.

Figure 16: Faces generated with style mixing. Left column shows the image generated with

the style vector obtained from the attribute mapping network. The middle column represents

a randomly generated face. Last column shows the result of style mixing, where age and

gender of the left person is preserved, and other attributes come from the middle person.
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7 CONCLUSIONS AND FUTURE WORK

Overall, this paper presents an end-to-end framework for generating synthetic data with faces,

that can be modified to suit the purposes of other research activities or certain commercial

uses, thus validating the relevancy of our work in a larger context.

To begin with, we established in the introduction chapters how using synthetic data for training

neural networks has gained momentum over the past few years, due to its many advantages.

To support this notion, we motivate decisions made when designing our framework based on

the advantages that synthetic data offers.

Firstly, to leverage the privacy-preserving nature of synthetic data and the high level of quality

and diversity of recent GAN architectures, we built our solution on top of a StyleGAN2

generator network trained to generate human faces.

Secondly, to support the ease of obtaining training labels for synthetic data, we conduct

experiments based on the approach suggested by Zhang et al. [65]. By adapting the

feature interpreter network to a convolutional architecture, instead of the resource-intensive

ensemble of fully-connected networks, we achieve great results in the problem of face semantic

segmentation, with a mean F1 of 92.01%.

Thirdly, to reinforce the idea of using synthetic data to complement real data in underrep-

resented cases, we train and use an attribute mapping network, which may later be used to

generate a large amount of synthetic data with attributes rarely present in the real data. We

reach a high control precision, with a 4.47 mean age error and a 95.53% gender accuracy.

Future work

Our work can be extended in a couple of directions.

Firstly, in order to improve the quality of the obtained training labels, one can study the

effects of adding more training samples with manually annotated labels. Even though using

the current set of 30 training samples results in overfitting after a number of epochs, we

hypothesize that the performance saturates with a relatively small number of examples.

Secondly, a semantic segmentation network should be trained on the generated data, in order

to effectively judge the exact impact that synthetic data has. Training on mixed real and

synthetic data would show if generated data actually improves results over using real data

exclusively.
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A CONFIGURATION FILES

1 DATASET_TRAIN:

2 PATH: "face_seg_dataset/train"

3

4 DATASET_VALID:

5 PATH: "face_seg_dataset/val"

6

7 TRAIN_SETUP:

8 DEVICES: [0]

9 WORKERS: 2

10 BATCH_SIZE: 2

11 EPOCHS: 100

12 OPTIMIZER: "adam"

13 LEARNING_RATE: 0.001

14 WEIGHT_DECAY: 0.0001

15

16 MODEL:

17 PRETRAINED: "weights/pretrained/ffhq-512.pt"

18 SIZE: 512

19 TRUNCATION: 1.0

20 TRUNCATION_MEAN: 4096

21 CHANNEL_MULTIPLIER: 2

22 LATENT: 512

23 N_MLP: 8

24 N_CLASSES: 18

Listing 1: Segmentation network training configuration file
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1 DATASET_TRAIN:

2 PATH: "attributes_train_dataset/train_df.pkl"

3

4 DATASET_VALID:

5 PATH: "attributes_train_dataset/val_df.pkl"

6

7 TRAIN_SETUP:

8 DEVICES: [0]

9 WORKERS: 2

10 BATCH_SIZE: 64

11 EVAL_EVERY: 2000

12 OPTIMIZER: "adam"

13 LEARNING_RATE: 0.001

14 WEIGHT_DECAY: 0.0001

15

16 MODEL:

17 PRETRAINED: "weights/pretrained/ffhq-512.pt"

18 SIZE: 512

19 TRUNCATION: 1.0

20 TRUNCATION_MEAN: 4096

21 CHANNEL_MULTIPLIER: 2

22 LATENT: 512

23 N_MLP: 8

24 N_CLASSES: 18

Listing 2: Attribute mapping network training configuration file
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B DETAILED ARCHITECTURES

Layer type Input shape Output shape

convolutional 3x224x224 64x224x224

convolutional 64x224x224 64x224x224

convolutional 64x224x224 64x224x224

max pool 64x224x224 64x112x112

convolutional 64x112x112 128x112x112

convolutional 128x112x112 128x112x112

max pool 128x112x112 128x56x56

convolutional 128x56x56 256x56x56

convolutional 256x56x56 256x56x56

convolutional 256x56x56 256x56x56

max pool 256x56x56 256x28x28

convolutional 256x28x28 512x28x28

convolutional 512x28x28 512x28x28

convolutional 512x28x28 512x28x28

maxpool 512x28x28 512x14x14

convolutional 512x14x14 512x14x14

convolutional 512x14x14 512x14x14

convolutional 512x14x14 512x14x14

maxpool 512x14x14 512x7x7

linear 25088 4096

linear 4096 4096

linear 4096 n classes

Table 11: VGG-16 architecture [56]. n classes is the number of output classes the network
was trained to classify. In the case of the network trained to predict ages, that number is 101
and in the case of the gender predictor, the number of classes is 2.
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C MORE DATA GENERATION RESULTS

Age 30, woman

Age 15, man

Age 65, woman

Age 50, man

Table 12: Samples produced with all components enabled

51



Figure 17: Failure cases of semantic segmentation. The main issues are related to the face

generation itself: uncertain eyeglasses, generation artifacts, or part of a second person present

in the image.
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